

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR THE BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

SMA 2272: STATISTICS
SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: OCTOBER 2013
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages

SECTION A (COMPULSORY)

Question One

a) Define the following terms:

(i)	A random variable	(1 mark)
(ii)	A probability distribution	$\mathbf{(1} \mathbf{~ m a r k})$
(iii)	Mutually exclusive events	$\mathbf{(1 ~ m a r k)}$

$$
P(A)=0.3, P(B)=0.2 \quad P(A \cap B)=0.1
$$

b) If

Determine the following probabilities:
$P\left(A^{\prime}\right)$
$P(A o B)$
(ii)
(2 marks)
$P\left(A^{\prime} \cup B\right)$
(iii)
c) Let X be a poisson random variable with a probability mass function given as $P(X=x)=\frac{e^{\lambda} \lambda^{x}}{x^{1}}, x=0.1,2, \ldots$ λ find the maximum likelihood estimator of
d) Disks of polycarbonate plastics from a supplier are analyzed for scratch and shock resistance. The results from 100 disks are summarized as follows:

Shock resistance

	High	Low	Total
High	70	9	79
Low	16	5	21
Total	86	14	100
(1 mark)			

Let A denote the event that a disk has a high shock resistance and let B denote the event that a disk has a high scratch resistance. Calculate:

$$
P(A / B)
$$

(i)

$$
P(B / A)
$$

(ii)
(2 marks)
(iii) Are the events A and B independent
e) Verify that the following functions are probability mass functions

x	-2	$-x$	0	1	2
$f x$	$1 / 8$	$2 / 8$	$2 / 8$	$2 / 8$	$1 / 8$

f) The time until a chemical reaction is complete in miseconds is approximated by the cumulative distribution function.

$$
F(x)=\left\{\begin{array}{cc}
0 & x<0 \\
1-e^{-0.01 x} & x \geq 0
\end{array}\right.
$$

Determine:
(i) The probability density function of X
(ii) Proportion of reactions which is completed within 200 milliseconds.
g) Let the continuous random variable X denote the current measured in a thin copper wire in Amperes.

$$
f(x)=0.05
$$

Assume that the range of X is ($0,20 \mathrm{~A}$) and assume that the probability density of for $0 \leq x \leq 20$
. What is the probability that a current measurement is less than 10 mili amperes?
(3 marks)

Question Two

a) Define the following terms:
(i) A point estimate
(2 marks)
(ii) Confidence interval
b) Briefly describe the FOUR properties of a good estimator
c) Ten measurements of impact energy (J) on specimens of A38 steel cut at $60^{\circ} \mathrm{C}$ are given as follows: $64.1,64.7,64.5,64.6,64.5,64.3,64.6,64.8,64.2$, and 64.3 . Assume that the impact energy is $\delta=1 J$
normally distributed with . Find a 95\% confidence interval for Ju, the mean impact energy.
(8 marks)

Question Three

a) The compressive strength of samples of cement can be modeled by a normal distribution with a mean of 6000 kg per cm^{2} and standard deviation of $100 \mathrm{~kg} / \mathrm{cm}^{2}$. What is the probability that:
(i) A sample's strength is less than 6250.
(ii) A sample's strength is between 58000 and $5900 \mathrm{~kg} / \mathrm{cm}^{2}$?
(iii) What strength is exceeded by 95% of the samples?
b) In a digital communication channel, assume that the number of bits received in error can be modeled by a binomial random variable, and assume that the probability that a bit is received in error is $1 \times 10^{-}$ ${ }^{5}$. If 16 million bits are transmitted, what is the probability that more than 150 errors occur?
(5 marks)
c) Assume that the number of asbestos particles in a squired meter of dust on a surface follows a poison distribution with a mean of 1,000 . If a squared meter of dust is analyzed, what is the probability that less than 950 particles are found?
(4 marks)

Question Four

a) Define the following terms:
(i) Statistical hypothesis
(1 mark)
(ii) Type 1 error
(1 mark)
b) Steven Gerald, a wire merchant has collected opinions on grape wine quality from a random sample of his customers. The customers tasted wines made from grapes grown in three regions of country. They rated wine quality on a scale of 1 (best) to 4 . The sample data are given below. Do the quality ratings depend on the grape growing region at 5% level of significance?
(10 marks)

Quality Rating	1	11	111	Total road
1	15	10	6	31
2	7	13	12	32
3	11	12	8	31
4	3	8	15	26
	36	43	41	120

c) The boiling points of a sample of 25 mercury metals is given below:
97.8, 97.2, 97.4, 97.6, 97.8, 97.9, 97.9, 98, 98, 98, 98.1, 98.2, 98.3, 98.4, 98.4, 98.4, 98.5, 98.6, 98.7, 98.8, 98.8, 98.9, 98.9 and 99.

$$
H 0 j U=98.6 \text { vs } \quad H u \neq 98.6
$$

Test the hypothesis at 5\% level of significance. marks)

Question Five

a) The table below shows two variables, X and Y

X	Y
36	54
26	30
12	28
40	48
24	36
18	30
30	38
30	46
14	16
34	42

(i) Plot a scatter diagram of the two variables
(ii) Does Y depend on X
(iii) Fit a regression model between X and Y

