

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR THE BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

SMA 2272: STATISTICS

SPECIAL/SUPPLEMENTARY EXAMINATION SERIES: OCTOBER 2013 TIME: 2 HOURS

Instructions to Candidates: You should have the following for this examination - Answer Booklet This paper consist of FIVE questions Answer question ONE (COMPULSORY) and any other TWO questions Maximum marks for each part of a question are as shown This paper consists of FOUR printed pages

SECTION A (COMPULSORY)

Question One

- **a)** Define the following terms:
 - (i) A random variable
 - (ii) A probability distribution
 - (iii) Mutually exclusive events

P(A) = 0.3, P(B) = 0.2 $P(A \cap B) = 0.1$

and

b) If

Determine the following probabilities: P(A')

© 2013 – Technical University of Mombasa

- (1 mark) (1 mark)
- (1 mark)

(1 marks)

$$\begin{array}{c} P(AoB) \\ \textbf{(ii)} \\ P(A \cup B) \\ \textbf{(iii)} \end{array}$$

$$\begin{array}{c} (2 \text{ marks}) \\ \textbf{(3 marks)} \end{array}$$

c) Let X be a poisson random variable with a probability mass function given as $P(X = x) = \frac{e^{\lambda} \lambda^{x}}{x^{1}}, x = 0.1, 2,....$ λ

find the maximum likelihood estimator of

(5 marks) **d)** Disks of polycarbonate plastics from a supplier are analyzed for scratch and shock resistance. The results from 100 disks are summarized as follows:

I ow 16	5	21
Low 16	5	21
Total 86	14	100

Let A denote the event that a disk has a high shock resistance and let B denote the event that a disk has a high scratch resistance. Calculate:

	P(A/B)	(2
(1)	P(B/A)	(2 marks)
(ii) (iii)	Are the events A and B independent	(2 marks) (2 marks)

e) Verify that the following functions are probability mass functions

Х	-2	-X	0	1	2
fx	1/8	2/8	2/8	2/8	1/8

The time until a chemical reaction is complete in miseconds is approximated by the cumulative **f**) distribution function.

$$F(x) = \begin{cases} 0 & x < 0\\ 1 - e^{-0.01x} & x \ge 0 \end{cases}$$

Determine:

Question Two

- The probability density function of X (i)
- Proportion of reactions which is completed within 200 milliseconds. (ii)
- g) Let the continuous random variable X denote the current measured in a thin copper wire in Amperes. f(x) = 0.05

Assume that the range of X is (0, 20A) and assume that the probability density of for $0 \le x \le 20$

. What is the probability that a current measurement is less than 10 mili amperes?

(3 marks)

(2 marks)

(2 marks)

(3 marks)

a)	Define (i) (ii)	the following terms: A point estimate Confidence interval		(2 marks) (2 marks)
b)	Briefly	describe the FOUR p	roperties of a good estimator	(8 marks)
c)	Ten m 64.1, 6	easurements of impact 54.7, 64.5, 64.6, 64.5 δ =	t energy (J) on specimens of A38 steel cut at 6, 64.3, 64.6, 64.8, 64.2, and 64.3. Assume $= 1J$	50°C are given as follows: that the impact energy is
	norma	lly distributed with	. Find a 95% confidence interval for Ju, th	e mean impact energy.

Question Three

a) The compressive strength of samples of cement can be modeled by a normal distribution with a mean of 6000kg per cm^2 and standard deviation of 100 kg/ cm^2 . What is the probability that:

(i)	A sample's strength is less than 6250.	(3 marks)
(ii)	A sample's strength is between 58000 and 5900 kg/cm ² ?	(4 marks)
(iii)	What strength is exceeded by 95% of the samples?	(4 marks)

b) In a digital communication channel, assume that the number of bits received in error can be modeled by a binomial random variable, and assume that the probability that a bit is received in error is 1 x 10⁻ ⁵. If 16 million bits are transmitted, what is the probability that more than 150 errors occur?

(5 marks) c) Assume that the number of asbestos particles in a squired meter of dust on a surface follows a poison distribution with a mean of 1,000. If a squared meter of dust is analyzed, what is the probability that less than 950 particles are found?

(4 marks)

(8 marks)

Question Four

- **a)** Define the following terms:
 - Statistical hypothesis (i)
 - (ii) Type 1 error
- **b)** Steven Gerald, a wire merchant has collected opinions on grape wine quality from a random sample of his customers. The customers tasted wines made from grapes grown in three regions of country. They rated wine quality on a scale of 1 (best) to 4. The sample data are given below. Do the quality ratings depend on the grape growing region at 5% level of significance? (10 marks)

Quality Rating	1	11	111	Total road
1	15	10	6	31
2	7	13	12	32
3	11	12	8	31
4	3	8	15	26
	36	43	41	120

c) The boiling points of a sample of 25 mercury metals is given below:

(1 mark)

(1 mark)

97.8, 97.2, 97.4, 97.6, 97.8, 97.9, 97.9, 98, 98, 98, 98, 98.1, 98.2, 98.3, 98.4, 98.4, 98.4, 98.5, 98.6, 98.7, 98.8, 98.8, 98.9, 98.9 and 99.

$$H0 jU = 98.6 vs Hu \neq 98.6$$

Test the hypothesis

at 5% level of significance. (8)

marks)

Question Five

a) The table below shows two variables, X and Y

Х	Y
36	54
26	30
12	28
40	48
24	36
18	30
30	38
30	46
14	16
34	42

- (i) Plot a scatter diagram of the two variables
- (ii) Does Y depend on X
- (iii) Fit a regression model between X and Y

(4 marks) (7 marks) (9 marks)