

TECHNICAL UNIVERSITY OF MOMBASA
 Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR DEGREE OF: BACHELOR OF SCIENCE IN CIVIL ENGINEERING

SMA 2273: APPLIED MATHEMATICS
END OF SEMESTER EXAMINATION
SERIES: APRIL 2015
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

a) Define the following terms:
(i) Variable speed
(ii) Velocity
(iii) Work
(iv)Power
(4 marks)
b) Find the tangential acceleration and the normal acceleration of a particle which moves on the ellipse $r=a \cos w t i+b \sin w t j$
c) A particle of mass 5 units moves along a space curve given by:

$$
\underset{\sim}{r}=\left(3 t^{2}+t\right) \underset{\sim}{i}+(3 t+2) \underset{\sim}{j}+\left(2 t^{4}-4 t^{3}\right) \underset{\sim}{k}
$$

find its:
(i) Velocity
(2 marks)
(ii) Acceleration
(2 marks)
(iii) Momentum
(2 marks)
(iv)Force at $\mathrm{t}=1$
(2 marks)
d) A particle is projected from the ground with a speed of $30 \mathrm{~m} / \mathrm{s}$ at an angle of 30° to the ground. Calculate: (use $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$)
(i) Time of flight
(ii) The horizontal range
(4 marks)
e) A force of magnitude 80 N acts along a positive x axis. Another force of magnitude 50 N is inclined at an angle 120 o to the horizontal surface. Find the resultant force and its direction from 80 N force
(4 marks)

$$
S_{x}=U_{x} t \quad x=u t \cos x
$$

f) Consider the horizontal motion at any time t to be and show that range is given by:

$$
x=\frac{u^{2} \sin 2 \alpha}{g}
$$

(3 marks)
g) A streamer takes time t, to travel distance L up a river, and time t_{2} to return. Show that the speed of the streamer with respect to the stream is

$$
\frac{L\left(t_{1}+t_{2}\right)}{2 t_{1} t_{2}}
$$

(4 marks)

Question Two

a) A gun whose mass is 0.8 kg fires a bullet whose mass is 0.016 kg with a velocity of $700 \mathrm{~m} / \mathrm{s}$. Compute the velocity of the gun recoil
b) A block of mass 5 kg is initially at rest on a smooth horizontal plane. A horizontal force of 20 N is applied to it for 10 seconds. Find the speed of the block after this time
(3 marks)

$$
\vec{F}=3 x y \hat{i}-5 z \hat{j}+10 x \hat{k}
$$

c) Find the total work done in moving a particle in a force field given by
along a $x=t^{2}+1 \quad y=2 t^{2} \quad z=t^{3}$
curve and from $t=1$ second to $t=2$ seconds

$$
\vec{V}=\left(4 t^{2}-t^{3}\right) \hat{i}-5 t j+\left(t^{4}-2\right) \hat{k}
$$

d) A particle of mass 2 units moves a long a space curve defined by Find:
(i) The momentum
(ii) The force acting on the particle at time $t=1$ second
e) (i) Differentiate between momentum of a body and impulse

$$
\bar{F}=\sin t \hat{i}+\cos t \hat{j}
$$

(ii) Find the impulse, induced by a force given by over a duration

Question Three

$$
F=4\left(1-e^{-t / 6}\right)
$$

a) A particle of mass 8 kg is acted upon by a force . If the body is initially at rest. Find the velocity of the particle after 3 second
(3 marks)
b) A particle of unit mass moves from rest along a straight line under a force (2-0.1V)N where V is the velocity in m / s. Find the displacement when V is $10 \mathrm{~m} / \mathrm{s}$
(3 marks) $\tan \theta=4 / 3$
horizontal where
. Find:
(i) Time taken for P to return to the horizontal plane
(ii) The maximum height attained and horizontal range
(iii) The speed of P after 2.2 seconds marks)
d) Show that the acceleration of a particle which travels along a curve with velocity is given by $\vec{a}=\frac{d v}{d t} \bar{T}+\frac{V^{2}}{R} \bar{N}$ \vec{N} where is a unit tangent vector to the space curve, is the unit principal normal and R is the radius of curvature
(4 marks)
e) A force of magnitude $4 N$ and $3 N$ acts along sides $A B$ and $A D$ of a square $A B C D$ respectively with sides 2 m . Find the perpendicular distance of the line of action of their resultant force R
(3 marks)

Question Four

a) State the first and the second Newton's Laws of Motion
b) A body of mass M falls from rest through a height h and is brought to rest by penetrating through a

$$
m g\left(1+\frac{h}{d}\right)
$$

depth a depth d into some soil. Show that the average resistance of the soil is
(6 marks)

$$
\underset{\sim}{F}=3 x y \underset{\sim}{i}-5 z j+10 x k
$$

c) Find total work done in moving a particle in a force field given by along the $x=t^{2}+1, \quad y=2 t^{2} \quad z=t^{3}$

$$
\text { curve } \quad \text { from } t=1 \text { to } t=2
$$

d) A man can swim directly across a stream of width 5 metres in t seconds when there is no current and

$$
S \sqrt{\frac{1}{t^{2}}-\frac{1}{T^{2}}} \mathrm{~m} / \mathrm{s}
$$

time T where there is current show that the velocity of the current is

Question Five

a) A particle of mass 3 kg rest on the surface of a rough plane which is inclined at 30° to the horizontal plane. It is connected by a light smooth pulley at the top of the plane to a particle of mass 3 kg which is hanging freely. If the coefficient of friction between 2 kg mass and the plane is $1 / 3$. Find the acceleration of the system when it is released from rest and the tension in the string. Find also the force exerted by the string on the pulley

$$
\underset{\sim}{F}=y z \underset{\sim}{i}+x z \underset{\sim}{j}+x y \underset{\sim}{k}
$$

b) Show that is a conservative force filed and hence find the potential function associated with this field with zero value at the point $(1,1,1)$
(6 marks)
c) Define the term conservative force
(2 marks)

$$
\underset{\sim}{F}=-\nabla \underset{\sim}{V} \quad \underset{\sim}{V}
$$

d) If where is a single valued function and has continuous partial derivative. Show that the work done in moving a particle from one point $\mathrm{P}_{1}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ to another point $\mathrm{P}_{2}\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ is independent of the path joining the two point

