

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
CERTIFICATE IN ELECTRICAL ENGINERING (CEEE 3/CEPE 3)
AMA 1103: ENGINEERING MATHEMATICS III
SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: OCTOBER 2013
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination - Answer Booklet

This paper consist of FIVE questions in TWO sections A \& B

Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages
SECTION A (COMPULSORY)

Question One

$$
z=4+j 3
$$

a) (i) Express in polar form
(ii) Express in the form
b) Determine the following integrals:

$$
\int x^{6} d x
$$

(i)
e
e

$$
\begin{equation*}
\int \sec ^{2} x d x \tag{1marks}
\end{equation*}
$$

(ii)

$$
\int(3 x+2)^{4} d x
$$

(iii)
$(a+b)^{7}$
c) (i) Using Pascal's triangle write down the binomial expansion of

$$
n_{c_{n-1}}=n_{c_{r}}
$$

(ii) Using properties of combinations coefficient prove that
d) Points $\mathrm{L}, \mathrm{M}, \mathrm{N}$ are mid points of the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CA}$ of the triangle ABC show that:

A

Figure 1

$$
\overline{A B}+\overline{B C}+\overline{C A}=0
$$

(i)

$$
2 \overline{A B}+3 \overline{B C}+\overline{C A}=2 \overline{L C}
$$

(ii)

$$
\overline{A M}+\overline{B N}+\overline{C L}=0
$$

(iii)

SECTION B (Answer any TWO questions from this section)
Question Two
a) (i) Write down the first 3 terms in the expansion of $(1+2 x)^{10}$
(ii) Use the binomial theorem to find the approximate value of $(0.998)^{8}$
(iii) How many different selections of 6 looks can be made from 10 books
b) (I) Find the value:
(i) 5 !
$\frac{13}{8!}$
(ii)

$$
5_{C_{3}}+5_{C_{4}}
$$

(iii)
(3 marks)

$$
\left(1+\frac{1}{n}\right)^{n}
$$

(II) Derive the binomial expansion of

$$
\sum_{r=0}^{\infty} \frac{1}{1!}=e
$$

(i) Show from the expansion that by showing the series
(ii) Use the series expansion to find the value of $\mathrm{e}^{0.1}$ accurate to 3 sig figure

Question Three

$$
3 x+4-\frac{5}{x}
$$

a) (i) Determine the value of as x increases from 1 to 2
(2 marks)

$$
\int_{\partial}^{3}(p-1)^{2} d p
$$

(ii) Evaluate
(2 marks)

$$
y=\left(q+\frac{1}{q}\right)^{2} d q \quad y=\frac{1}{2}
$$

(iii) If
. Find the value of the arbitrary constrant of integration if when $q=11 / 2$
(6 marks)

$$
y=x^{2}-x+2
$$

b) (I) With help of diagrams, find the area between the curve , the ordinates $x=-1$ and $x=$ 2 and the axis
(II) Evaluate each of the following definite integral:

$$
\int_{2}^{4} e^{2 x} d x
$$

(i)

$$
\int_{0}^{\pi / 2}(\sin x-\cos x) d x
$$

(ii)
(3 marks)

Question Four

a) (I) Simplify

$$
j^{12}
$$

(i)
(ii)

$$
\left(4-j^{3}\right)^{2}
$$

(iii)

$$
(5-j a)-(2-j 6)+(3-j 4)
$$

(iv)

$$
(4-j 3)
$$

(II) Multiply by an appropriate factor to give a product that is entirely real. What is the result?

$$
\frac{4-j 5}{1+j 2}
$$

(III) Simplify
b) (I) Simplify the following giving the results in polar form:

$$
3\left(\cos 143^{\circ}+j \sin 143^{\circ}\right) \times 4\left(\cos 57^{\circ}+j \sin 57^{\circ}\right)
$$

(i)

$$
\frac{10\left(\cos 126^{\circ}+j \sin 126^{\circ}\right)}{2\left(\cos 72^{\circ}+j \sin 72^{\circ}\right)}
$$

(ii)
(iii) If find the modulus and the argument of the complex number z

Question Five

$$
O \underset{\sim}{P}=\underset{\sim}{p} ; \underset{\sim}{Q} O=\underset{\sim}{a} \quad \underset{\sim}{r}=\underset{\sim}{p}-\underset{\sim}{q}
$$

a) (I) Given show the position of R when referring to figure 2 below.

Figure 2

Q

$$
\overline{O H}=\bar{h}+\overline{O K}=\bar{K} \quad \overline{H K}
$$

(II) Figure 3 shows,
and m is the mid point of , find the position vector of m $\bar{h} \quad \bar{k}$ in term of and by completing a parallelogram
k

$$
\overline{P Q}=4 i+3 j+2 k \quad|\overline{P Q}|
$$

b) (I) find using a three dimensional vector illustration diagram. (6 marks)

$$
\operatorname{cosine(c,m,n)} \underset{\substack{\text { of the vector } \\ \underset{\sim}{r}=3 i-2 j+6 \underset{\sim}{j}}}{ } \overline{O P} \text { i.e. } \underset{\sim}{r}=a \underset{\sim}{i}+b \underset{\sim}{j}+c \underset{\sim}{k}
$$

direction cosine ($\mathrm{c}, \mathrm{m}, \mathrm{n}$) of the vector

