

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)

Faculty of Applied & Health Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

DIPLOMA IN SCIENCE LABORATORY TECHNOLOGY (DSLT 10S)

APS 2201: PHYSICS TECHNIQUES I – MECHANICS, FLUIDS, FUELS & COMBUSTION

END OF SEMESTER EXAMINATION

SERIES: DECEMBER 2011

TIME: 2HOURS

Instructions to Candidates: You should have the following for this examination - Answer booklet This paper consists of FIVE questions Answer Question ONE (Compulsory) from SECTION A and any other TWO questions from SECTION B Maximum marks for each part of a question are clearly shown This paper consists of THREE printed pages

© 2011 The Mombasa Polytechnic University College

SECTION A (Compulsory)

Question One (30 marks)

a)	Explain FOUR sources of energy	(4 marks)	
b)	Discuss the various energy changes involved to have water in a dam pro	duce electricity (2	
	marks)		
c)	State the law of conservation of momentum	(2 marks)	
d)	When is work said to have been done? Give a formula of determining work done (3 marks)		
e)	Define the terms		
	(i) Viscosity	(1 mark)	
	(ii) Fluidity	(1 mark)	
f)	Distinguish between viscosity in liquids and gases	(4 marks)	
g)	Define hydrostatic pressure and derive a formula to calculate it.	(3 marks)	

h) The radius of the effort piston of a hydraulic lift is 1.4cm while that of the load piston is 7.0 cm. This machine is used to raise a load of 120kg, at a constant velocity through a height of 2.5m. Given that the machine is 80% efficient, calculate;

(i)	The effort needed	(5 mark	<s)< th=""></s)<>
(ii)	The energy wasted in using this machine.	(5	marks)

SECTION B (Attempt any TWO questions)

Question Two (20 marks)

- a) The boy pulls a toy car by a string which makes an angle of 30[°] with the horizontal. If the boy applies force of 4.8N and the toy moves through a horizontal distance of 8m, calculate the work done by the boy. (5 marks)
- b) A body of mass 50kg is raised to a height of 2m above the ground.

	(i) What is its potential energy?		(3 marks)						
	(ii)	If the (I) (II)	 body is allowed to fall, find its kinetic energy When halfway down Just before impact with the ground (Take 'g' as 10N/k 	(4 marks) sg)(4 marks)					
c)	State (the TV	VO laws of thermodynamics	(4 marks)					
Question Three (20 marks)									
a)	Distin	guish l	between Newtonian and Non-Newtonian fluids	(4 marks)					

b)	Discuss thermodynamic reversibility	(3 marks)		
c)	Discuss FIVE different types of combustion	(5 marks)		
d)	Distinguish giving examples combustion with oxygen as the oxidizing combustion with air as the oxidizing element	g element and (4 marks)		
e)	A block and tackle system is used to lift a mass of 200kg. If this machine has a velocity ratio of 5, and an efficiency of 80%, calculate the effort E applied. (Take $g = 10N/Kg$) (4 marks)			
Qu	estion Four (20 marks)			
a)	Derive a relationship between Mechanical Advantage, Velocity Ratio and Efficience	ciency (6		
b)	Describe the working principle of a simple power plant	(6 marks)		
c)	 A man uses the inclined plane to lift a 50kg load through a vertical heigh inclined plane makes an angle of 30°with the horizontal. If the efficiency plane is 72%, calculate: (i) The effort needed to move the load up the inclined plane at a const (ii) The work done against friction in raising the load through a vertica (Take 'g' as 10N/kg) 	ht of 4m. The of the inclined ant velocity (4 marks) al height of 4m. (4 marks)		
Qı	uestion Five (20 marks)			
a)	Outline the factors that determine the adiabatic combustion temperature.	(4 marks)		
b)	 A car traveling at a speed of 72km/h is uniformly stopped after 8 seconds by a If the car and its occupants have a mass of 1250kg, calculate (i) The braking force (ii) The work done by the braking force to stop the car 	pplying brakes. (3 marks) (3 marks)		
c) d)	Draw a steam power plant cycle Differentiate between a superheated steam boiler and a supercritical steam ger marks)	(5 marks) nerator. (5		