TECHNICAL UNIVERSITY OF MOMBASA
 Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS

UNIVERSITY EXAMINATION FOR DEGREE OF:
BACHELOR OF SCIENCE IN MATHEMATICS \& COMPUTER SCIENCE BACHELOR OF SCIENCE IN STATISTICS \& COMPUTER SCIENCE

AMA 4108: DISCRETE MATHEMATICS
END OF SEMESTER EXAMINATION
SERIES: APRIL 2015
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

a) Write a logically equivalent statement to "if you do not attend recitation, then you are not wise"
(2 marks)
b) Show that the following argument form is valid:

$$
\begin{aligned}
& p \vee(q \vee r) \\
& \sim r \\
& \therefore p \vee q
\end{aligned}
$$

c) Let A and B be any two sets prove that;

$$
(A \cap B)^{\subset}=A^{\subset} \cup B^{\subset}
$$

using elements argument method

$$
A=\{0,1,2\}, B=\{a, b\}, C=\{m, n\}
$$

d) Let

Find
e) Prove by mathematical induction that for every positive integer, n

$$
1+3+5+\ldots+(2 n-1)=n^{2}
$$

$$
f: \Re \rightarrow R \quad f(x)=\frac{3 x}{x^{2}+1}
$$

f) Find the range of defined by
g) Let $\mathrm{P}(\mathrm{m}, \mathrm{n})$ be " n is greater than or equal to m " where the universe of discourse is the set of non$\exists n \forall m P(m, n) \quad \forall m \exists n P m(, n)$
negative integers. What is the truth value of and justify your answers
(4 marks)

$$
(\sim p \vee q) \vee(p \wedge \sim q)
$$

h) Determine whether the statement is a tautology, a contingency or absurdity
(2 marks)

" $f \circ g$ "	$" g \circ f "$	$f(x)=\sqrt{x+1}$	$g(x)=\frac{1}{x^{2}}$
i) Find and	where	and	
Question Two			

(2 marks)

$$
\begin{equation*}
(p \vee q) \rightarrow r \equiv(p \rightarrow r) \wedge(q \rightarrow r) \tag{6marks}
\end{equation*}
$$

a) Show that

$$
6-7 \sqrt{2}
$$

b) Prove by contradiction that is irrational
c) State the converse, inverse the contra positive of the proposition. "If Sara plays her guitar, then Jack will sing"
d) Use truth table to determine whether the given argument form is valid or invalid

$$
\begin{aligned}
& \quad p \wedge q \\
& \\
& \quad p \vee q \\
& p \rightarrow r \\
& \therefore r \\
& \\
& \text { e) Define } f: z \rightarrow z \text { by the rule } f(n)=n^{2} ; \forall n \in z \text { if one to one? }
\end{aligned}
$$

Question Three

$$
n A(\cup B)^{\subset}=30
$$

a) Let A and B be the subsets of U with $u(U)=150, n(A)=80, n(B)=55$ and

Find $n(A \cap B)$

$$
A=\{\phi, 1,2,(1,2)\}
$$

b) Find the power set of the set

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

c) Prove the following using membership table
(5 marks)
$f: \Re \rightarrow \Re \quad f(x)=x^{3}+5$
d) Let defined as
(i) Determine whether f is one-to-one and onto
(ii) Find the formula that defines the inverse function f^{-1}

Question Four

a) Prove by mathematical induction $5^{n}-2^{n}$ is divisible by 3 for any $\quad n \geq 1$ (7 marks)
b) $f: \mathfrak{R} \rightarrow(1, \infty)$ and $f(x)=10^{2 x}+1 \quad g(x)=1 / \log _{10}(x-1)$
$\begin{aligned} & \text { Show that the functions } \\ & \text { each other. }\end{aligned}$ and \quad (7 marks)
c) Let a relation A on the set of real numbers R be defined as follows:
$\forall a, b \in \mathfrak{R} \quad a \mathrm{~A} b \Leftrightarrow a<b$
Determine whether A is relative, symmetric or transitive
d) Write the converse, inverse and contra positive of the following statements:
$\sim p \rightarrow \sim q$

Question Five

$$
f, g: \Re \rightarrow \Re \quad f(x)=2 x-3 \quad g(x)=\frac{x+1}{5}
$$

a) Let be defined by and

$$
f^{-1}
$$

(i) Find and g ${ }^{-1}$
(2 marks)

$$
(f o g)^{-1}=g^{-1} o f^{-1}
$$

(ii)
(5 marks)

$$
A=(1,2,3) \quad B=\{1,2,3,4\}
$$

b) Let and define a binary relation R from A to B as follows $R=\{(a, b) \in A \times B: a<b\}$
(i) Find the ordered pairs in R
(ii) Find domain and range of R
c) Construct truth table for the following compound statement

$$
p \rightarrow q \leftrightarrow p \wedge q
$$

d) Prove the following statement by contraposition "For all integers m and n, if $m+n$ is even, the m and n are both even or m and n are both odd"

$$
9 n^{2}+3 n-2
$$

e) Prove that
is even

