
 TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSISCS DIPLOMA IN BUILDING \& CIVIL ENGINEERING (DBCE/ARC 14J)

AMA 2150: ENGINEERING MATHEMATICS I
END OF SEMESTER EXAMINATION
SERIES: APRIL 2014
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions

Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages

Question One (Compulsory)

a) Define the following terms as used in Mathematics:
(i) An equation
(1 mark)
(ii) A sequence
b) Simplify the following equation giving the result without functional indices.

$$
F=\sqrt[3]{a^{6} b^{3}} \div \sqrt{\frac{1}{9} a^{4} b^{6}} \times\left(4 \sqrt{a^{6} b^{2}}\right)^{\frac{-1}{2}}
$$

c) Show that the sum of n terms of an arithmetic series is given by:

$$
S n=\frac{n}{2}(2 a+(n-1) d)
$$

where a is the first term, n is the number of terms and d is the common difference.
d) Insert three geometric means A, B and C between 56 and 896
e) Simplify the following:

$$
J^{42}
$$

(i)

$$
J^{11}
$$

(ii)

$$
J^{7}
$$

(iii)
f) Express the following in Cartesian Form:

$$
e^{1-j \pi / 4}
$$

$$
\begin{equation*}
\log _{a} N=n \quad \log _{b} N=m \quad \log _{b} N=\frac{\log _{a} N}{\log _{a} b} \tag{3marks}
\end{equation*}
$$

g) Given that and show that and hence find

$$
7\left(14.3^{x+5}\right) \times 6.24^{2 x}=294
$$

h) Solve for x in the following equation:
i) Rewrite the following without logarithms:

	$\log W=2(\log A+\log W)-(\log 32+2 \log \pi+2 \log r+\log c)$
(i)	$\log S=\log K-\log 2+2 \log \pi+2 \log n+\log Y+\log r+2 \log L-2 \log h-\log g$
(ii)	(1 mark)
	$\ln I=\ln (2 v)-\ln (k R+r)-\ln K+K L\}$
(iii)	(1 mark)
(1 mark)	

Question Two

a) Derive the quadratic equation formular and hence solve the following equation below:

$$
2 x^{2}-3 x-4=0
$$

b) State whether or not the following can each be expressed as product of linear factors.

$$
2 x^{2}-9 x+18=0
$$

(i)

$$
x^{2}-11 x+28=0
$$

(ii)

$$
x^{2}+5 x-24=0
$$

(iii)

$$
x^{2}-4 x-21=0
$$

(iv)
c) Solve for the unknowns in the following set of equations:

$$
\begin{align*}
& 5(x+2 y)-4(3 x+4 z)-2(x+3 y-5 z)=16 \\
& 2(3 x-y)+3(x-2 z)+4(2 x-3 y+z)=-16 \\
& 4(y-2 z)+2(2 x-4 y-3)-3(x+4 y-2 z)=-62 \tag{7marks}
\end{align*}
$$

d) The $6^{\text {th }}$ term of an AP is -23 and the $10^{\text {th }}$ term is -35 . Find the first term, the common difference and the sum of the first 15 terms of the series.

Question Three

$$
(a+b)+j(a-b)=7+j 2
$$

a) Given that . Find the values of a and b
b) Transpose the formular below to make f the subject:

$$
\begin{gather*}
\frac{R}{r} \sqrt{\frac{f+p}{f-p}} \\
\log _{a} b=\frac{1}{\log _{b} a} \tag{4marks}
\end{gather*}
$$

c) Show that
d) Solve for the unknowns in the following set of equations below:

$$
\begin{aligned}
& \frac{2 x-1}{5}+\frac{x-2 y}{10}=\frac{x+1}{4} \\
& \frac{3 y+2}{3}+\frac{4 x-3 y}{2}=\frac{5 x+4}{4}
\end{aligned}
$$

e) Differentiate between an infinite and a finite sequence.
f) Given the following:

$$
\begin{aligned}
& \sum_{n-1}^{\infty}(2 n+3) \\
& \sum_{n=1}^{6} u n
\end{aligned}
$$

Find (i)

$$
\begin{equation*}
\sum_{n=3}^{7} U_{n} \tag{1mark}
\end{equation*}
$$

(ii)

Question Four

a) Show that:

$$
\begin{equation*}
\log _{2} x+\log _{3} x+\log _{4} x=7.079 \log _{10} x \tag{3marks}
\end{equation*}
$$

$$
\sin ^{2} x+\cos ^{2} x=1
$$

b) Show that and hence derive the subsequent trigonometric identities
c) Solve for x in the equation below:

$$
\begin{align*}
& 2 \log _{10} x=4 \tag{3marks}\\
& U_{n}=n^{2}+3 n+1
\end{align*}
$$

d) Given that , determine an expression for
e) Name the two parts that make up a complex number.

Question Five

a) Given the following equation, make q the subject of the formular:

$$
\begin{gather*}
p q^{2}+r q+z=0 \tag{2marks}\\
e^{j \theta}=\cos \theta+j \sin \theta
\end{gather*}
$$

b) Show that
c) Express the following in polar form:

$$
\begin{equation*}
z=4+j 3 \tag{2marks}
\end{equation*}
$$

d) Solve the following set of simultaneous equations:

$$
\begin{aligned}
& 3 x+2 y-z=19 \\
& 4 x-y+2 z=4 \\
& 2 x+4 y-5 z=32
\end{aligned}
$$

e) Determine the antilogs to the given base of the following:

$\overline{3} .1267$		
(i) Antilog	to base 10	(1 marks)
1.263		
(ii) Antilog	to base 5	(1 mark)
4.6234		
(iii) Antilog	to base e	(1 mark)

f) Draw an Argand diagram to represent the vectors:

$$
\begin{aligned}
& \quad z_{1}=2+j 3 \\
& \text { (i) } \\
& z_{1}=2+j 3
\end{aligned}
$$

(ii) $z_{3}=-4-j 5$
(iii)

