

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 DIPLOMA IN ELECTRICAL POWER ENGINEERING (DEP VI)

AMA 2302: ENGINEERING MATHEMATICS VI
END OF SEMESTER EXAMINATION
SERIES: APRIL 2013
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions in TWO sections A \& B

Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages
SECTION A (COMPULSORY)

Question One

a) Define the following terms a used in mathematics:
(i) Diagonal matrix
(ii) The order of a matrix
b) Find the eigen values of the matrix

$$
A=\left[\begin{array}{ccc}
2 & 3 & -2 \\
1 & 4 & - \\
2 & 10 & -5
\end{array}\right]
$$

c) State whether the following is a vector or scalar quantity
(i) A temperature of $100^{\circ} \mathrm{C}$
(ii) An acceleration of $9.8 \mathrm{~m} / \mathrm{s} 2$
(iii) The weight of a 7 kg mass
(iv) The sum of $£ 500$
(v) A North Easterly ward of 20 knots
d) Det
d) Determine the resultant of the following set of vectors

$$
\overline{A B}+\overline{B C}+\overline{C D}+\overline{D E}+E F
$$

e) ABCD is a quandrateral with G and H the midpoints of DA and BC respectively.

$$
\overline{A B}+\overline{D C}=2 \overline{G H}
$$

Show that

$$
I=\int_{1}^{2} \int_{0}^{3} x^{2} y d x d y
$$

f) Evaluate
g) Give any THREE areas where vectors can be applied in real life.

SECTION B (Answer any TWO questions from this section)

Question Two

a) ABCD is a quadrilateral in which P and Q are the mid points of the diagonals AC and BD respectively. Show that:

$$
\overline{A B}+\overline{A D}+\overline{C B}+\overline{C D}=4 \overline{P Q}
$$

b) Find the second moment of area of rectangle 6 cm x 4 cm about an axis through one corner perpendicular to the plane of the figure.

$$
\int_{1}^{2} \int_{0}^{3} \int_{0}^{1}\left(p^{2}+q^{2}-r^{2}\right) d p d q d r
$$

c) Evaluate
d) If is parallel to , find the value of K.
(2 marks)
Question Three

$$
Y_{1}^{2}=9 x \text { and } y_{2}=x^{2} / 9
$$

a) Find the area enclosed by the curves
b) Given the following matrices
$A=\binom{5}{2}, B=\left(\begin{array}{llll}4 & 0 & 7 & 3\end{array}\right), C=\left(\begin{array}{lll}2 & 6 & 9 \\ 1 & 0 & 0\end{array}\right)$
state the order of each matrix and hence find the following;
(i) B^{2}
(ii) $\mathrm{A} \times \mathrm{B}$
c) Show by vectors that the line joining the mid points of two sides of a triangle is parallel to the third side and half its length.
(4 marks)
d) Given the following matrix:

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 1 & 5 \\
6 & 0 & 2
\end{array}\right)
$$

$$
A A^{-1}=A^{-1} A=I
$$

Show that where I is the identity matrix.
(6 marks)

Question Four

a) Define the term "null matrix and hence given an example of it.

(3 marks)

$$
y=\frac{4 x}{5}
$$

b) Find the area bounded by the x-axis and the ordinate at $x=5$

(5 marks)

$$
\overrightarrow{O R}=\vec{r}, \overrightarrow{O S}=2 \underset{\sim}{r}, \overrightarrow{O R}=3 / 2 \underset{\sim}{p}, \overrightarrow{\mathrm{QK}}=N \overrightarrow{Q R}, \overrightarrow{P K}=n \overrightarrow{P S}
$$

c) In the figure below
. Find two distinct expressions in terms of P, R, M and N for OK by equating these expressions. Find the value of M and N and hence determine the ratio QK:KR and PK:KS.

Figure 1

d) Define the term 'A Scalar Quantity'

$$
A=\left(\begin{array}{ll}
4 & 0 \tag{2marks}\\
3 & 1
\end{array}\right)_{\text {find }}|A| \quad A^{-1}
$$

e) Given the matrix find and hence Question Five

$$
A=\left(\begin{array}{ll}
4 & 7 \\
5 & 2
\end{array}\right), \quad A A^{-1}=A^{-1} A=I
$$

a) Given the following matrix show that where I is the identity matrix.
(5 marks)

$$
A(2,1), \square \quad B(5,3), C(7,8), D(4,6)
$$

b) ABCD is a quadrilateral with show that ABCD is a parallelogram.
(5 marks)
c) On a 3-dimensional vector space, if we let
show that x, y, z $l^{2}+m^{2}+n^{2}=1 \quad \alpha, \beta$,
where are the angles the resultant vector makes with the axis

$$
l=\cos \alpha, m=\cos \beta, n=\cos
$$ respectively.

(6 marks)

$$
I=\int_{1}^{2} \int_{0}^{\pi}(3+\sin \theta) d \theta d r
$$

d) Evaluate
(4 marks)

