

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
DEEE III/DEPE III/ DTIE III/ DICE III/DEAE III

AMA 2203: ENGINEERING MATHEMATICS III
END OF SEMESTER EXAMINATION
SERIES: APRIL 2013
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Non-programmable Scientific Calculator
- Mathematical Table

This paper consist of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions

Maximum marks for each part of a question are as shown
This paper consists of FIVE printed pages

SECTION A (COMPULSORY)

Question One

a) (i) A box with sides of length $x, y, z m m$ is expanding along the x and y sides at a rate of 2 and 3 mm per second but contracting along the z side at a rate of 4 mm per second. Find the rate of change of volume when $\mathrm{x}=\mathrm{y}=10 \mathrm{~mm}, \mathrm{z}=20 \mathrm{~mm}$.
(3 marks)

$$
V=\angle n\left(x^{2}+y^{2}\right) \quad \frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=0
$$

(ii) If prove that

$$
z=3 x^{2} 2 x y+4 y^{2}
$$

b) (i) Find all first and second partial derivatives for

$$
V=\pi \tau^{2 h} \quad r=5 \mathrm{~cm}, h=10 \mathrm{~cm} .
$$

(ii) Given that volume of cylinder is given by where Find the appropriate increase in volume when r increase by 0.2 cm and h decreases by 0.1 cm .
c) (i) Find the differential $\frac{d y}{d x}$ and its value at $\quad x=2 \quad y=3 x^{4}-7 x^{3}+4 x^{2}+3 x-4$. Find the second $\frac{d^{2} y}{d x^{2}}$
order of the same expression of y.

$$
\tan x \frac{d y}{d x}=y
$$

(ii) Find the general solution of
. Also find the particular solution for which $\mathrm{y}=2$ at

$$
x=\frac{1}{6} \pi
$$

$\frac{d T}{d \theta}=\mu T=0 \quad \theta=0$
(4 marks)
d) (i) solve given that $\mathrm{T}=\mathrm{T}_{0}$ where
(ii) A constant e.m.f. E is introduced into an (L, R) circuit. If " i " is the current at the instant t in a

$$
\angle \frac{d i}{d t}
$$

given direction caused by E , there is an e.m.f in the reverse direction due to the inductance L . Obtain the differential equation of the circuit and hence find the current i at time t. ($\mathbf{3}$ marks)
e) Form the augmented matrix of the following set of equations and solve by elimination:

$$
\begin{aligned}
& x_{1}-4 x_{2}-2 x_{3}=21 \\
& 2 x_{1}+x_{2}+2 x_{3}=3 \\
& 3 x_{1}+2 x_{2}-x_{3}=-2
\end{aligned}
$$

SECTION B (Answer any TWO questions from this section)

Question Two

$$
I=\frac{V}{R}
$$

a) (i) If and $V=250$ volts and $R=50,0 \mathrm{hms}$, find the change in I resulting from an increase of 1 volt in V and an increase of $0.5,0 \mathrm{hm}$ in R .
(2 marks)

$$
\frac{\partial z}{\partial x} \quad \frac{\partial z}{\partial y}
$$

(ii) Find and for

$$
z=(3 x+2 y)(4 x-5 y)
$$

$$
z=\frac{x+y}{x-y}
$$

b) (i) Find all first and second partial derivatives for

$$
z=\angle n\left(e^{x}+e^{y}\right) \quad \frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=1
$$

(ii) If show that
c) (i) In the right angled triangle figure 1 , x is increasing at $2 \mathrm{~cm} / \mathrm{s}$ while y is decreasing at $3 \mathrm{~cm} / \mathrm{s}$. Calculate the rate which z is changing when $\mathrm{x}=5$ and $\mathrm{y}=3 \mathrm{~cm}$.
(4 marks)

$$
\begin{equation*}
z=\tan \left(x^{2}-y^{2}\right) \quad \frac{\partial z}{\partial x} \quad \frac{\partial z}{\partial y} \tag{2marks}
\end{equation*}
$$

(ii) If , find and
Figure 1
d) The total surface areas of a cone of base radius r and perpendicular height h is given by:

$$
S=\pi r^{2}+\pi r \sqrt{r^{2}+h^{2}}
$$

If r and h are each increasing at the rate of $0.25 \mathrm{~cm} / \mathrm{s}$, find the rate at which S is increasing at the instant when $\mathrm{r}=3 \mathrm{~cm}$ and $\mathrm{h}=4 \mathrm{~cm}$.
(4 marks)

Question Three

$$
x^{2}+y^{2}-2 x-6 y+5=0 \quad \frac{d y}{d x} \quad \frac{d^{2} y}{d x^{2}} \quad x=3, y=2
$$

a) (i) If , find and at
(4 marks)
(ii) If $x=a(\cos \theta+\theta \sin \theta)$ and $y=a(\sin \theta-\theta \cos \theta)$. Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+3 \frac{d x}{d t}+2 x=0 \tag{3marks}
\end{equation*}
$$

b) (i) A particle moves so that its distance x from a fixed origin at time t is given by

$$
\frac{d x}{d t}=5 \quad y=A e^{m t}+B e^{m t}
$$

Solve this equation given that at time $\mathrm{t}=0, \mathrm{x}=0$ and also \quad (noting that $\quad y=A e^{d t}+B e$ is the general solution)
(3 marks)

$$
x=\frac{3 t}{1+t}, y=\frac{t^{2}}{1+t} \quad \frac{d y}{d x}
$$

(ii) Given the equations a curve as \quad Find the value of when $t=2$
(2 marks)
c) (i) The radius of curvature R is given by:

$$
R=\frac{\left\{1+\left(\frac{d y}{d x}\right)^{2}\right\}^{3 / 2}}{\frac{d^{2} y}{d x^{2}}}
$$

Find the radius of curvature for the hyperbola $\mathrm{xy}=4$ at the point $\mathrm{x}=2, \mathrm{y}=2$.
(3 marks)

$$
\cos ^{2} y+\sin ^{2} y=1 \quad x=\sin y \quad \frac{d}{d x}\left\{\sin ^{-1} x\right\}=\frac{1}{\sqrt{1-x^{2}}}
$$

(ii) Given that and that prove that
$x^{5} \sin 2 x \cos 4 x$
d) Find the differential expression with respect to x, of Differentiate with respect to x $x^{5} \sin 2 x \cos 4 x$

(3 marks)

Question Four

a) (i) Solve the set of equation using the matrix method.

$$
\begin{aligned}
& 2 x_{1}-2 x+3 x_{3}=2 \\
& x_{1}+3 x-x_{3}=11 \\
& 2 x_{1}-2 x_{2}+5 x_{3}=3
\end{aligned}
$$

(4 marks)
$\begin{array}{lcl}\text { (ii) If } \\ a(3 \times 2) \times(2 \times 3) & \text { matrix } \\ \text { matrix }\end{array}$

$$
A=\left(\begin{array}{lll}
5 & 2 & 4 \\
1 & 3 & 8 \\
7 & 9 & 6
\end{array}\right)
$$

b) (i) If and I is the unit matrix, prove that A.I = A.

$$
A=\left(\begin{array}{lll}
2 & 3 & 5 \\
4 & 1 & 6 \\
1 & 4 & 0
\end{array}\right)
$$

(ii) If . Find the adjoint of A.

$$
\left|\begin{array}{lll}
3 & 2 & 5 \\
4 & 6 & 7 \\
2 & 9 & 2
\end{array}\right|
$$

c) (i) Evaluate
(ii) Solve for ' y ' by the use of determinants:

$$
\begin{aligned}
& x+2 y-3 z=3 \\
& 2 x-y-z=11 \\
& 3 x+2 y+z=-5
\end{aligned}
$$

d) Find the values of K for consistency when

$$
\begin{aligned}
& x+y-k=0 \\
& 11 x-3 y+11=0 \\
& 2 x+4 y-8=0
\end{aligned}
$$

a) Find the second partial derivatives of the following functions:

$$
x^{2}+4 x^{2} y^{2}+y^{4}
$$

(i)
(3 marks)

$$
\frac{x}{x+y}
$$

(ii)
(3 marks)

$$
y=\frac{w s^{3}}{d^{4}}
$$

b) (i) , find the percentage increase in y when w increases by 2 per cent, s decreases by 3 per cent and d increases by 1 per cent.
(3 marks)

$$
\frac{d y}{d x}+a y+b=0
$$

(ii) Solve

$$
\begin{equation*}
y=A x^{2}+B x \tag{2marks}
\end{equation*}
$$

c) (i) Form the differential equation for

$$
\frac{d y}{d x}=\frac{x^{2}+y^{2}}{x y}
$$

(ii) Solve
d) In a star connected circuit, current l_{1}, l_{2}, l_{3} flowing through impendances Z_{1}, Z_{2}, Z_{3} are given by:

$$
\begin{aligned}
& i_{1}+i_{2}+i_{3}=0 \\
& z_{1} i_{1}-z_{2} i_{2}=e_{1}-e_{2} \\
& z_{2} i_{1}-z_{3} i_{3}=e_{2}-e_{3} \\
& \quad z_{1}=10 ; z_{2}=8 ; z_{3}=3 ; e_{1}-e_{2}=65 ; e_{2}-e_{3}=160 \\
& \text { If } \\
& i_{1}, i_{2}, i_{3}
\end{aligned}
$$ apply matrix methods to determine the values of

