

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A CONSTITUENT COLLEGE OF JKUAT)

Faculty of Applied & Health Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

CERTIFICATE IN MEDICAL LAB SCIENCE

AMA 1105: FOUNDATION MATHEMATICS

SPECIAL/SUPPLEMENTARY EXAMINATION SERIES: OCTOBER 2011 TIME: 2 HOURS

INSTRUCTIONS:

You should have the following for this examination - Answer booklet This paper consists of **FIVE** questions Answer question **ONE** (**COMPULSORY**) and any other **TWO** questions This paper consists of **FOUR PRINTED** pages

QUESTION ONE (Compulsory)

$$2^{x+3} = 8^{x-1}$$

(a) Solve

(x+y)?

(b) Use Pascal's triangle to write down the expansion of

$$\frac{8+\sqrt{3}}{2-\sqrt{3}}$$

- (c) Rationalize
- (d) Evaluate (i) A+B

(ii)
$$A - 7 B - C$$

Given $A = \begin{pmatrix} 3 & 7 \\ 4 & 5 \end{pmatrix}$, $B = \begin{pmatrix} -7 & 3 \\ 2 & 8 \end{pmatrix}$, $C = \begin{pmatrix} -2 & 5 \\ 6 & 4 \end{pmatrix}$

(e) The sum of a number of terms of an arithmetic Progression is - 19½, the first term is 16½ and the common difference is -3. Find the number of terms.

QUESTION TWO

(a) Solve by substitution

x + 3y = 52x - 2y = 7

(b) (i) Solve
$$4^x - 12x \quad 2^x + 32$$

(c) Use the sine rule to calculate the length PR given triangle PQR has length r = 5.75 cm $\angle P^0$ and $\angle Q^0$ and A^0 are 42⁰ and 65⁰ respectively.

= 0

$$\begin{array}{c} \underline{\log 125} \\ \overline{\log 625} \\ \end{array} \\ (d) \qquad \text{Simplify} \end{array}$$

(e) Solve
$$\frac{9}{12} + \frac{12}{x+1} = 6$$

QUESTION THREE

$$1 + co +^2 \theta = \cos ec^2 \theta$$

(a) Show that

(b) Find
$$\frac{dy}{ax} \quad y = (4x - 3)^3$$

(c) Show that the sum of the first in terms of a Geometric Progression is given by

$$Sn = \frac{a(1-r^n)}{(1-r)}$$

$$(x^2 + x + 1) \quad (x + 7)$$

(e) Simplify

(f) Solve by matrix method

$$x + 3y = 7$$
$$x - y = 5$$

QUESTION FOUR

(a) Solve
$$= \frac{3}{x+2} = \frac{1}{x-2} - \frac{4}{x-4}$$

$$\tau \mathbf{P}_4 = 30\mathbf{P}_2^{\tau}$$

(b) Solve

(c) Evaluate

(d) If a, 15, 9a form a geometric Progression. Find a, and the first three terms.

 $x = \log_3 7$

- (e) Evaluate to 3 s.f.
- (f) Write down the fourth term in $(a-7)^5$

QUESTION FIVE

(a) Solve by quadratic formula $y=3x^2+8x + =0$

(b) From first principles find
$$\frac{dy}{dx}$$
 given that $y = x^2$

$$\frac{5}{\sqrt[2]{3+\sqrt{2}}}$$

(c) Rationalize

(d) In an arithmetic Progression 3 + 11 + ... write down the 10^{th} and 19^{th} terms.

 $15 \boldsymbol{\zeta}_y$

- (e) Evaluate
- (f) Solve for b given

$$\frac{\sqrt[2]{b}}{1-\sqrt{b}} = 4$$