



THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

## (A Constituent College of JKUAT)

# (A Centre of Excellence) Faculty of Engineering & Technology

DEPARTMENT OF MECHANICAL & AUTOMOTIVE ENGINEERING

### **UNIVERSITY EXAMINATION FOR:**

BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

## EMG 2312: METROLOGY

#### END OF SEMESTER EXAMINATION SERIES: DECEMBER 2012 TIME: 2 HOURS

#### **Instructions to Candidates:**

You should have the following for this examination - Answer Booklet This paper consists of **FIVE** questions. Answer any other **THREE** questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

#### **Question One**

- **a)** Distinguish the following methods of measurements:
  - (i) Direct Method
  - (ii) Indirect Method
- **b)** Explain: (i) Measurement (ii) Inspection

For each provide examples

- c) Describe the following using examples:
  - (i) Line standards
  - (ii) Light (wavelength) standards

(3 marks)

(4 marks)

| Qu | lestion Two                                                                                                                                                                                                  |                                |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| a) | Give <b>FOUR</b> basic set of shapes for typical inspection gauges.                                                                                                                                          | (2 marks)                      |
| b) | Describe the procedure for preparing simple "GO" and "NOT GO" gauges                                                                                                                                         | (6 marks)                      |
| c) | State Taylors Principle of Gauging. Briefly illustrate this principle.                                                                                                                                       | (10 marks)                     |
| d) | Distinguish between unilateral and bilateral tolerance.                                                                                                                                                      | (2 marks)                      |
| Qu | lestion Three                                                                                                                                                                                                |                                |
| a) | State <b>FOUR</b> common principles used to design comparators.                                                                                                                                              | (4 marks)                      |
| b) | Outline <b>FIVE</b> desirable characteristics of comparators.                                                                                                                                                | (5 marks)                      |
| c) | With the aid of a well labeled diagram, show the working principle of a mechanical co                                                                                                                        | mparator.<br>( <b>8 marks)</b> |
| d) | Mention <b>THREE</b> advantages for use of electronic over mechanical comparators.                                                                                                                           | (3 marks)                      |
| Qu | iestion Four                                                                                                                                                                                                 |                                |
| a) | <ul> <li>By use of examples, explain the difference between:</li> <li>(i) Primary standard</li> <li>(ii) Secondary standard</li> <li>(iii) Working standard</li> </ul>                                       | (6 marks)                      |
| b) | <ul> <li>Explain the following terms in precision measurement:</li> <li>(i) Resolution</li> <li>(ii) Sensitivity</li> <li>(iii) Calibration</li> <li>(iv) Accreditation</li> <li>(v) Traceability</li> </ul> | (10 marks)                     |
| 、  |                                                                                                                                                                                                              |                                |
| C) | Explain FUUR sources of errors.                                                                                                                                                                              | (4 marks)                      |

**d)** With the aid of a diagram, outline how to determine the actual size of a 50mm slip gauge starting with

#### three gauges namely: TWO 50mm gauge and one master 100mm slip gauge.

(6 marks)

(7 marks)

#### **Question Five**

| a) | State the main requirements of slip gauges. How are slip gauges manufactured? | (6 marks) |
|----|-------------------------------------------------------------------------------|-----------|
| b) | Discuss limits, fits and tolerance in engineering metrology.                  | (6 marks) |
| c) | Describe <b>FOUR</b> main features on a calibration certificate.              | (2 marks) |

**d)** An angle of 98° 27' 15" is to be developed using an angle gauge set below. Show the arrangement with a sketch.

| Degrees | 1, 3, 9, 27, 41, 90 |
|---------|---------------------|
| Minutes | 1, 3, 9, 27         |
| Seconds | 3, 6, 18, 30        |

(6 marks)