TECHNICAL UNIVERISTY OF MOMBASA Faculty of Engineering \& Technology

DEPARTMENT OF COMPUTER SCIENCE \& INFORMATION TECHNOLOGY
DIPLOMA IN INFORMATION COMMUNICATION TECHNOLOGY (DICT 14S)
EEE 2135: ELECTRONICS
END OF SEMESTER EXAMINATION
SERIES: APRIL 2015
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination
Answer Booklet
This paper consists of FIVE questions.
Attempt question ONE (Compulsory) and any other TWO questions
Maximum marks for each part of a question are as shown

Question One (Compulsory)

a) Given the colour codes of the following resistors, find the value of each resistor:-
(i) Yellow, purple, Red, Silver
(ii) Brown, Orange, Brown, Gold
(iii) Orange, Orange, Orange, Red marks)
(iv) Yellow, Orange, Red
b) Calculate the total Resistance R_{T}, of figure 1
c) Use nodal analysis to calculate Vx in the following circuit.

Question Two

a) Design rectifier with given specification. Specification $=\mathrm{Vdc}=12 \mathrm{~V}, \mathrm{Vr}<0.12 \mathrm{~V}$, $\mathrm{Idc}=3 \mathrm{~A}$

Assumption Vou $=1 \mathrm{~V}$ input frequency $=60 \mathrm{~Hz}$. Use full-wave bridge rectifier.
b) Find dc output voltage, output current, ripple voltage, conduction interval conduction angle of RC loaded half-wave rectifier. GIVEN DATA:

Secondary voltage Vrms $=13.4(50 \mathrm{~Hz}), \mathrm{R}=12 \Omega, \mathrm{C}=50,000 \mu \mathrm{~F}, \mathrm{Vou}=1 \mathrm{~V}$

Question Three

a) Find the therein equivalent of the circuit between node A and B by performing a sequence of Norton \longleftrightarrow therein transformations.

Figure 5
b) Calculate the therein and Norton equivalent network at the terminal A and B in figure below in two ways a) by combining resistors to simplify the circuit and b) by using nodal analysis.

Figure 4

c) Draw the therening equivalent circuit network below and find the value of its components of figure 5 below
(6 marks)

9K

Question Four

a) (I) The SCR shown has a gate trigger voltage $\mathrm{VT}=1 \mathrm{~V}$. gate trigger current $\mathrm{IT}=5 \mathrm{~mA}$ and $\mathrm{IH}=$ 3 mA
Z
(i) What is the Vout when SCR is OFF?
(ii) What is vin that trigger the SCR?
(iii) If VCC is decreased until the SCR open, what is the value of VCC? marks)
(II) Draw and explain the V-I characteristic of SCR?

Question Five

$$
\beta=40
$$

a) Design pup BJJ circuit such that $\mathrm{VEC}=1.8 \mathrm{~V}$ take

Figure 7

$$
\beta=120
$$

b) Calculate the value of IC, IB, IE, VC, VB of the following 'UPU' circuit mode of transistor

Also state the (8 marks)
n

