



THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

## (A Constituent College of JKUAT)

# (A Centre of Excellence) Faculty of Engineering & Technology

DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING

### **UNIVERSITY EXAMINATION FOR:**

BACHELOR OF SCIENCE IN ELECTRICAL & ELECTRONIC ENGINEERING

EEE 2419: MICROWAVES

## END OF SEMESTER EXAMINATION

SERIES: DECEMBER 2012 TIME: 2 HOURS

#### **Instructions to Candidates:**

You should have the following for this examination - Answer Booklet This paper consists of **FIVE** questions. Answer any other **THREE** questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

#### **Question One (Compulsory)**

- a) State and explain FOUR major characteristics that distinguish microwave engineering from its lower engineering counterpart. (4 marks)
- **b)** Explain why microwave engineering is applicable to the following:
  - (i) Antennas
  - (ii) Satellite communications
  - (iii) Radar systems
  - (iv) Remote sensing, medical diagnostics, treatment and heating method
- c) A plane wave propagating in a lossless dielectric has an electric field given by:

(6 marks)

$$\overline{E} = EoC\Omega (1.45 \times 10^{10} t - 62.5z) \hat{a}_2$$
. Determine its:

- d) Write down Maxwell's equations and the constitutive parameters in differential form. (4 marks)
- e) For a dielectric material, show that the Maxwell equation for H can be expressed as:

$$\nabla \times H = jw \left( \varepsilon' - j\varepsilon'' - j\frac{\delta}{\omega} \right) \overline{E}$$
(4 marks)

**f)** Show that for a rectangular wave guide:

$$xg = \frac{\lambda_o}{\sqrt{\left[1 - \left(\frac{\lambda_o}{\lambda_c}\right)^2\right]}}$$

 $\beta = \pm \sqrt{k^2 - k_c^2}$ 

Take:

and the symbols have their usual meaning. (7 marks)

#### **Question Two**

| a) | State giving reasons why conventional vacuum tubes are less useful signal sources a frequencies above IGH2.                                                                                                                                  | t microwave<br>(4 marks)   |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| b) | Describe using suitable diagrams the principle of operations of Reflex Klystron                                                                                                                                                              | (6 marks)                  |
| c) | State <b>FOUR</b> major applications of Reflex Klystron Oscillator                                                                                                                                                                           | (2 marks)                  |
| d) | <ul> <li>A Reflex Klystron is to be operated at frequency of 10GHz with dc beam voltage 300V, r 0.1cm for 1 ¾ mode. Calculate:</li> <li>(i) The maximum RF power output</li> <li>(ii) Repeller voltage for a beam current of 20mA</li> </ul> | epeller space<br>(4 marks) |
| e) | State, giving frequency ranges, performance and applications of a multi-cavity Klystron.                                                                                                                                                     | (4 marks)                  |

#### **Question Three**

- a) Explain the following modes stand for:
  - TEM (i)
  - (ii) ΤE
  - ΤM (iii)

© 2012 – The Mombasa Polytechnic University College

- b) By separation of variable method express H<sub>z</sub>(x, y, z), E<sub>x</sub>(x, y, z) E<sub>y</sub> (x, y, z), H<sub>y</sub> (x,y,z) in terms of waveguide modes for an TEmm wave propagating in the Z direction in a rectangular waveguide with the broader dimension a along the x axis and the hammer dimension b along the y axis. (10 marks)
- c) Prove that the propagation constant in a losy waveguide is given by:

 $\gamma^2 = \beta^2 (1-j) (\tan \delta_m + \tan \delta_e)$ 

where the symbols have the usual meaning. (7 marks)

#### **Question Four**

- **a)** Describe using suitable diagrams, avalanche multiplication in Read diode.
- **b)** Explain the main electrical features of the following microwave devices.
  - (i) IMPATT diode
  - (ii) TRAPAT diode
  - (iii) BARITT diode
- c) Draw the equivalent circuit of Manley-Rome power relations for an ideal non-linear reactance and state its significance. (4 marks)
- d) State FIVE advantages of the up-converter parametric amplifier over the negative resistance parametric amplifier.
   (5 marks)

#### **Question Five**

- **a)** Write down the following matrices applicable to microwave circuit networks and state clearly the input variable and output variable.
  - (i) Impedance matrix
  - (ii) Admittance matrix
  - (iii) Scattering P. matrix
- **b)** Describe the procedures for measuring:
  - (i) Low microwave power levels
  - (ii) High microwave power levels
- c) Describe with a schematic diagram, the principle of operation of a four port microwave circulator.

(6 marks)

(8 marks)

(6 marks)

(6 marks)