

### **TECHNICAL UNIVERSITY OF MOMBASA**

# Faculty of Engineering &

## Technology

#### DEPARTMENT OF BUILDING & CIVIL ENGINEERING

UNIVERSITY EXAMINATION FOR DECREE IN:

**BACHELOR OF SCIENCE IN CIVIL ENGINEERING (BSCE)** 

ECE 2408: THEORY OF STRUCTURES V

#### END OF SEMESTER EXAMINATION SERIES: APRIL 2015 TIME ALLOWED: 3 HOURS

#### **Instructions to Candidates:**

You should have the following for this examination

- Answer Booklet

- *Pocket Calculator* This paper consists of **FIVE** questions. Answer questions **ONE (Compulsory)** and any other **TWO** questions Maximum marks for each part of a question are as shown Use neat, large and well labeled diagrams where required This paper consists of **TUDEE** printed pages

This paper consists of **THREE** printed pages

#### **Question One (Compulsory)**

- a) With clear illustrations, discuss the THREE fundamental relationships necessary for analysis of structures (9 marks)
- b) The structure shown in figure Q1 (b) consists of three springs and supported at nodes A and D. If axial loads of 4KN and 18KN are applied at nodes B and C respectively. Determine the displacement at nodes B and C and the reactions at A and D (13 marks)

- **c)** A simple plane truss is made of two identical bars = (with E, A and L constant) and loaded as shown in figure Q1 (c), find:
  - (i) Displacement of node 2

(4 marks) (4 marks)

(ii) Stress in each bar

#### Question Two

Analyze the continuous beam shown in figure Q2 using the matrix method. Assume that the supports are unyielding and the EI is constant for all members (20 marks)

#### **Question Three**

- a) Discuss any four classes of framed structures that may be utilized in construction (8 marks)
- b) Find the stresses in the two bar assembly which is loaded with force P and constrained at the two ends as shown in figure Q3(b) (12 marks)

#### **Question Four**

**a)** With clear illustrations, compare and contrast the following structural analysis methods:

(i) Classical versus matrix methods

(4 marks) (4 marks) (12 marks)

- (ii) Matrix versus finite element methods
- **b)** For the spring system shown in figure Q4(d), find the global stiffness matrix

#### **Question Five**

Analyze the truss shown in figure Q5 and evaluate the reactions at the supports. Assume FA to be constant for all the members.