

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering \& Technology

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING

HIGHER DIPLOMA IN BUILDING \& CIVIL ENGINEERING (HDBCE 12J)
EBC 3120: HYDRAULICS
SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: OCTOBER 2013
TIME ALLOWED: 2 HOURS

Instructions to Candidates:
You should have the following for this examination
Answer Booklet

This paper consists of FIVE questions.
Answer any THREE questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
Question One
a) Define the following forms of precipitation:
(i) Drizzle
(ii) Rain
(iii) Snow
(iv) Hail
(v) Glaze
(10 marks)
b) Outline any THREE examples of use of data derived from the study of hydrology.
(6 marks)
c) Define the following terms:
(i) Hydrology
(ii) Evapotranspiration
(4 marks)

Question Two

a) With the aid of a sketch, explain the working principle of 'tipping bucket raingauge" (6 marks)
b) The data in table 1 were obtained from a certain catchment. The Thiessen polygon areas were determined for each station. Estimate the average precipitation using:
(i) Thiessen polygon method
(ii) Arithmetic mean method
(14 marks)
Table 1

Station	I	II	III	IV	V	VI	VII	VII
Thiessen Polygon Area (m²)	17 0	164	156	150	116	36	124	42
Precipitation (mm)	93	105	109	122	135	140	142	128

Question Three

a) Make a labeled sketch of a "USWB class A pan"
b) The data shown in table 2 were obtained from an evaporation pan in Nyeri. The standard cup used holds 0.5 mm equivalent of rainfall.
(i) Determine the evaporation rate for Nyeri for the period

Table 2

Day	1	2	3	4	5	6	7
Rainfall mm	14	6	12	8	0	5	6
No. of cups removed	10	-	-	-	-	-	-
No. of cups added	-	-	-	-	14	8	6

(ii) Determine the evaporation loss in m^{3} during the same period from a nearby lake with an area of 640 ha assuming a pan coefficient of 0.75 .
(8 marks)
c) In a certain catchment area, the daily precipitation was observed in eleven raingauge stations as shown in table 3. On a certain day, the observations indicated that one raingauge station was out of order. The normal annual precipitation of the other stations is within 10% of the average rainfall of the station out of order. Estimate the missing data at station H .
(6 marks)

Question Four

a) A basin has an area of $26560 \mathrm{~km}^{2}$, a perimeter of 965 km and an axial length of 230 km . Determine:
(i) Form factor
(ii) Compactness coefficient
(iii) Elongation ratio
(iv) Circularity ratio
(10 marks)
b) The data shown in table 4 was obtained during a stream flow exercise. Using the mean section method, determine the stream discharge
(10 marks)
Table 4

Distance from left bank (m)	0	2.2	4.2	6.0	7.8	8.8
Depth of vertical (m)	0	0.6	0.80	1.20	0.60	0
Mean velocity in vertical (m/s)	0	0.68	0.83	1.31	0.72	0

Question Five

a) With the aid of sketch, illustrate the following:
(i) Unconfined aquifer
(ii) Confined aquifer
(iii) Artesian well
(iv) Perched water aquifer
(v) Ground water table
(10 marks)
b) In relation to ground water, define the following terms:
(i) Aquifer
(ii) Aquiclude
(iii) Specific capacity of a well
(iv) Specific yield
(v) Transmissibility
(10 marks)

