TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR DEGREE OF:
BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING (BSME Y2 S2)

SMA 2370: CALCULUS IV

END OF SEMESTER EXAMINATION
 SERIES: DECEMBER 2014
 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of TWO printed pages

Question One (Compulsory)

a) State THREE conditions that a function $\mathrm{f}(\mathrm{x}, \mathrm{y})$ must satisfy for it to be continuous at the point ($\mathrm{x}_{0}, \mathrm{y}_{0}$).
(3 marks)

$$
u=z \sin \frac{y}{x}, \quad x=3 r^{2}+2 s, y=4 r-2 s^{3}, z=2 r^{2}-3 s^{2} \quad \frac{\partial u}{\partial r}
$$

b) If
where
find
(3 marks)

$$
F=x^{2} y z^{3} \quad e=e^{-u}, y=\sin u+1, z=u-\cos u
$$

c) Find the directional derivative of along the curve at the point where $u=0$
d) A beam of very low weight, uniform cross-section and length l, simply supported at both ends carries a concentrated load W at the centre. It is known that the deflection at the centre is given by:

$$
y=\frac{w l^{3}}{48 E I}
$$

where E is Young's modulus and I is a moment of inertia. E is a constant but the following small percentage increases occur 2^{ϵ} in W in l and $5{ }^{\epsilon}$ in I. Show that the error in y is then negligible.
(5 marks)

$$
\iint_{s} \vec{F} \cdot \hat{n} d s \quad \vec{F}=4 x z \hat{i}-y^{2} \hat{j}+y z \hat{k}
$$

e) Using divergence theorem, evaluate
where
and s the surface bounded by $x=0, x=1 y=0, y=1 z=0, z=1$

$$
\left.\left(\oint x^{2} y \cos x+2 x y \sin x-y^{2} e^{x}\right) d x+\left(x^{2} \sin x-2 y e^{x} d y\right]\right)
$$

f) Evaluate

$$
x^{2 / 3}+y^{2 / 3}=a^{2 / 3}
$$

along the hypocycloid

$$
\text { cur } \lg \operatorname{rad} \phi=\overrightarrow{0}
$$

g) Prove that

Question Two

$$
x^{2}+y^{2}+z^{2}
$$

a) Find the maximum and minimum value of subject to the constraint conditions:

$$
\frac{x^{2}}{4}+\frac{y^{2}}{5}+\frac{z^{2}}{25}=1 \quad \text { and } \mathrm{z}=\mathrm{x}+\mathrm{y}
$$

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1
$$

b) Sketch and name the surface in 3 dimensional space represented by
(6 marks)

Question Three

a) Find the equations for the:
(i) Tangent line

$$
3 x^{2} y+y^{2} z=-2, \quad 2 x z-x^{2} y=3
$$

(ii) Normal plane to the curve at the point $(1,-1,1)$
(11 marks)

$$
x^{2} y+3 y-2
$$

b) Expand in powers of $\mathrm{x}-1$ and $\mathrm{y}+2$

Question Four

$$
\int_{0}^{\pi / 2} \ln |\sin x| d x=-\frac{\pi}{2} \ln 2
$$

a) Prove that

$$
z=z(x, y), \quad x=r \cos \theta, y=r \sin \theta
$$

b) If , express:

$$
\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}
$$

in polar coordinates

Question Five

$$
\vec{A}=3 y \hat{i}-x z \hat{j}+y z^{2} \hat{k}
$$

a) Verify Stoke's theorem for $2 z=x^{2}+y^{2}$
bounded by $\mathrm{z}=2$ with the circle C as its boundary

$$
f(x)=\cos \alpha x, \quad-\pi \leq x \leq \pi \quad \alpha \neq 0, \pm 1, \pm 2, \pm 3
$$

b) Find a Fourier series for where

