TECHNICAL UNIVERSITY OF MOMBASA
 Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR DEGREE OF:
BACHELOR OF SCIENCE IN ELECTRICAL \& ELECTRONIC ENGINEERING BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING BACHELOR OF SCIENCE IN CIVIL ENGINEERING BACHELOR OF TECHNOLOGY IN INFORMATION TECHNOLOGY (BSEE/BSME/BSCE/BTIT)

END OF SEMESTER EXAMINATION
SERIES: APRIL 2015
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)
a) Evaluate the following integrals:

$$
\int x^{2} \sqrt{x^{3}+5} d x
$$

(i)
(ii)

$$
\int \frac{5 x-3}{(x+1)(x-3)} d x
$$

(iii)
marks)

$$
d / d x\left(2 x^{3} y^{2}\right)
$$

b) Determine

$$
f(x)=\frac{x^{2}+2 x}{x^{2}-1}
$$

c) Find the vertical and horizontal asymptotes for

$$
y=x^{3}-2 x^{2}+3 x-1
$$

d) Find the equation of the tangent and normal to the curve
e) Find the volume of the solid formed by rotating about the x-axis the area bounded by and the x -axis

$$
\int \frac{\sqrt{x}+1}{x^{2}} d x
$$

f) Evaluate
(2 marks)
Question Two
a) Evaluate:

$$
\int \frac{1}{2 \sin ^{2} x+4 \cos ^{2} x} d x
$$

(i)

$$
\int 2 x^{2} e^{-3 x} d x
$$

(ii)

$$
\int_{-\pi / 4}^{0} \sec x \tan x d x
$$

(iii)
marks)

$$
\cos ^{2} x=1 / 2(1+\cos 2 x) \quad \sin ^{2} x=1 / 2(1-\cos 2 x)
$$

b) Use the identities and to evaluate:

$$
\int \sin ^{4} 2 x d x
$$

(i)

$$
\int \sin ^{2} 3 x \cos ^{3} x d x
$$

(ii)

Question Three

$$
y=\cos 2 t, x=\sin t \quad \frac{d y}{d x} \quad \frac{d^{2} y}{d x^{2}}
$$

a) Given find and
b) Define what is meant by convergence of an improper integral and hence investigate the convergence
$\int_{-\infty}^{\infty} \frac{d x}{1+x^{2}}$
of

> (8 marks)

$$
\int_{2}^{3} \frac{d x}{x^{2}-4 x+13}
$$

c) Find the value of

Question Four

a) Use the trapezoidal rule and the Simpson's rule with $\mathrm{n}=8$ to approximate:

$$
\int_{0}^{2} \sqrt{x^{2}+1} d x
$$

How do the two results compare with each other?
b) Find the following integrals:

$$
\int_{0}^{\infty} 4 e^{-2 x} d x
$$

(i)

$$
\int_{\pi / 6}^{\pi / 3}(1-\cos 3 t) \sin 3 t d t
$$

(ii)
(4 marks)

$$
y=x^{3}
$$

c) Find the area of the surface generated by revolving about the x-axis the arc of the curve on [0, 1]

Question Five

$$
\int\left(\frac{1}{9-x^{2}}\right) d x=\arcsin \frac{x}{3}+c
$$

a) Show that
b) Evaluate:

$$
\int \frac{d x}{2+2 \sin x+\cos x}
$$

(i)

$$
\int_{1}^{e} \frac{\ln x}{x^{2}} d x
$$

(ii)

$$
\int \frac{d x}{x \sqrt{9+x^{2}}}
$$

(iii)

