

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR THE BACHELOR OF SCIENCE IN ELECTRICAL & ELECTRONIC ENGINEERING BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING BACHELOR OF TECHNOLOGY IN INFORMATION TECHNOLOY (BSCE/BSME/BTIT)

SMA 2172/AMA 4101: CALCULUS I

SPECIAL/SUPPLEMENTARY EXAMINATION SERIES: OCTOBER 2013 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

Answer Booklet

This paper consist of FIVE questions in TWO sections A & B
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

SECTION A (COMPULSORY)

Question One

a) Given the functions:

$$f(x) = x^{3}$$
 $g(x) = x - 3$
and

 $(f \circ g)(x)$

(i) Obtain the composite function

(2 marks)

 $(f \circ g)(x)$

Determine the domain and range of (ii)

$$f(x) = \begin{cases} \frac{x^2 - 9}{x - 3} & \text{if } x \neq 3\\ c & \text{if } x = 3 \end{cases}$$

 $\frac{dy}{dx} = \frac{xy - x\sqrt{1 + x^2}}{y\sqrt{1 + x^2} - 1 - x^2} \qquad y^2 + x^2 = 2y\sqrt{1 + x^2}$ if **c)** Show that (i)

d) Using the differential estimate correct to 5 decimal places

∜33

e) Determine the rate of change of the surface area of a spherical ballon given that its volume is changing at the rate of 2m³/s at the instant the radius is 6m (3 marks)

 $y = \log e(x^3 + 2x - 1) \qquad \frac{dy}{dx}$ FION B (A-f) If (4 marks) SECTION B (Answer any TWO questions from this section)

Question Two

a) Given that
$$f(x) = 5x$$
 $g(x) = x - 5$
(i) $(fog)(x)$ (ii) $(fog)^{-1}(x)$
(3 marks)

(i)

$$\lim_{x \to 0} \frac{1 - \sqrt{1 - x}}{x}$$
(i)

$$\lim_{x \to 0} \frac{5 + x}{x^2 + x + 1}$$
(ii)
(3 marks)

 $y = \cos x$ c) Differentiate from 1st principles (7 marks)

Question Three

	$y = 3x^2 - 4x + 2$	
a)	(i) Find the turning points on the graph of	and distinguish between them.
		(4 marks)
	(ii) Sketch the graph of the curve in a(i)	(4 marks)

(2 marks)

is continuous at x = 3

(4 marks)

(5 marks)

(4 marks)

b) A curve is defined parametrically by:

$$y = \frac{2t}{1+t}, x = \frac{1-t^2}{1+t^2}$$

find its gradient at t = 1

(6 marks)

$$3y = 6t - 5t^3$$

c) Show that the normal to the curve

drawn at the point K (1, 1/3) passes through the origin **(6 marks)**

Question Four

a) Differentiate with respect to x

$$y = \tan^{-1} \frac{2x}{1 - x^2}$$
 and simplify your answer

(7 marks)

b) The time of swing of a pendiculum, T is given by:

 $T = K\sqrt{l}$

where k is a constant. Determine the percentage change in the time of swing if the length of the pendulum l changes from 32.1cm to 32.0 (5 marks)

c) A rectangular box whose length is one and half its width has a total surface area of 400cm². Find the dimensions of the block that would give it maximum volume (8 marks)

Question Five

a) The distance x metres travelled by a vehicle in time t seconds after the brakes are applied is given by:

$$x = 20t - \frac{5t^2}{3}$$

$$x = t^3$$
, $y = 3t^2 + 8$

Determine (i) The speed of the vehicle in km/h at the instand the brakes are applied, and(ii) The distance the car travels before it stops

(3 marks)

(5 marks)

b) Find the value of C for which the function:

$$f(x) = \begin{cases} x^2 - c^2 & x < 4\\ Cx + 20 & x \ge 4\\ & \text{is continuous on} \end{cases} (-\infty, \infty)$$

c) Find the normals to the curve

xy + 2x - y = 0

that are parallel to the line

2x + y = 0

(8 marks)