

TECHNICAL UNIVERSITY OF MOMBASA
 Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR THE BACHELOR OF SCIENCE IN ELECTRICAL \& ELECTRONIC ENGINEERING BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING BACHELOR OF TECHNOLOGY IN INFORMATION TECHNOLOY (BSCE/BSME/BTIT)

SMA 2172/AMA 4101: CALCULUS I

SPECIAL/SUPPLEMENTARY EXAMINATION
 SERIES: OCTOBER 2013
 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
SECTION A (COMPULSORY)
Question One
a) Given the functions:

$$
\begin{gathered}
f(x)=x^{3} \quad g(x)=x-3 \\
\text { and }
\end{gathered}
$$

$(f \circ g)(x)$
(i) Obtain the composite function

$$
(f \circ g)(x)
$$

(ii) Determine the domain and range of
(2 marks)

$$
f(x)=\left\{\begin{array}{cl}
\frac{x^{2}-9}{x-3} & \text { if } x \neq 3 \\
c & \text { if } x=3
\end{array}\right.
$$

b) Determine the value of C so that the function
is continuous at $\mathrm{x}=3$
(4 marks)

$$
\frac{d y}{d x}=\frac{x y-x \sqrt{1+x^{2}}}{y \sqrt{1+x^{2}}-1-x^{2}} \quad y^{2}+x^{2}=2 y \sqrt{1+x^{2}}
$$

c) Show that (i) if
d) Using the differential estimate correct to 5 decimal places
e) Determine the rate of change of the surface area of a spherical ballon given that its volume is changing at the rate of $2 \mathrm{~m}^{3} / \mathrm{s}$ at the instant the radius is 6 m

$$
y=\log e\left(x^{3}+2 x-1\right) \quad \frac{d y}{d x}
$$

f) If find

SECTION B (Answer any TWO questions from this section)

Question Two

$$
f(x)=5 x \quad g(x)=x-5
$$

a) Given that
and , find

$$
\text { (i) } \quad(f \circ g)(x) \quad \text { (ii) }(f \circ g)^{-1}(x)
$$

b) Evaluate:

$$
\lim _{x \rightarrow 0} \frac{1-\sqrt{1-x}}{x}
$$

(i)

$$
\lim _{x \rightarrow 0} \frac{5+x}{x^{2}+x+1}
$$

(ii)

$$
y=\cos x
$$

c) Differentiate
from $1^{\text {st }}$ principles
(7 marks)

Question Three

$$
y=3 x^{2}-4 x+2
$$

a) (i) Find the turning points on the graph of and distinguish between them.
(ii) Sketch the graph of the curve in a(i)
b) A curve is defined parametrically by:

$$
y=\frac{2 t}{1+t}, x=\frac{1-t^{2}}{1+t^{2}} \quad \text { find its gradient at } \mathrm{t}=1
$$

$$
3 y=6 t-5 t^{3}
$$

c) Show that the normal to the curve
drawn at the point $\mathrm{K}(1,1 / 3)$ passes through the origin

Question Four

a) Differentiate with respect to x

$$
y=\tan ^{-1} \frac{2 x}{1-x^{2}} \text { and simplify your answer }
$$

b) The time of swing of a pendiculum, T is given by:

$$
T=K \sqrt{l}
$$

where k is a constant. Determine the percentage change in the time of swing if the length of the pendulum l changes from 32.1 cm to 32.0
c) A rectangular box whose length is one and half its width has a total surface area of $400 \mathrm{~cm}^{2}$. Find the dimensions of the block that would give it maximum volume
(8 marks)

Question Five

a) The distance x metres travelled by a vehicle in time t seconds after the brakes are applied is given by:

$$
\begin{array}{r}
x=20 t-\frac{5 t^{2}}{3} \\
x=t^{3}, y=3 t^{2}+8
\end{array}
$$

Determine (i) The speed of the vehicle in km / h at the instand the brakes are applied, and(ii) The distance the car travels before it stops
b) Find the value of C for which the function:

$$
f(x)=\left\{\begin{array}{ll}
x^{2}-c^{2} & x<4 \tag{5marks}\\
C x+20 & x \geq 4
\end{array} \quad(-\infty, \infty)\right.
$$

is continuous on
c) Find the normals to the curve

$$
x y+2 x-y=0
$$

that are parallel to the line
$2 x+y=0$
(8 marks)

