

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR DEGREE OF:

BACHELOR OF SCIENCE IN CIVIL ENGINEERING BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING BACHELOR OF SCIENCE IN ELECTRICAL & ELECTRONIC ENGINEERING

SMA 2270/SMA 2277: CALCULUS III

END OF SEMESTER EXAMINATION SERIES: DECEMBER 2014 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
 - Scientific Calculator

This paper consist of **FOUR** questions Answer question **ONE (COMPULSORY)** and any other **TWO** questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

Question One (Compulsory)

b) Show that the function

Find the appropriate value of C

$$\lim_{x\to 0^+} \left(\frac{1}{\sin^2 x} - \frac{\cot x}{x}\right)$$

a) Evaluate

 $f(x) = x - x^3$

on the interval

(4 marks)

 $-1 \le x \le 0 \qquad 0 \le x \le 1$ satisfies Rolle's theorem. and

(5 marks)

$$f(x) = \frac{1}{x}$$

c) Compute the fifth order Taylor's polynomial P^5 at a = 1 for the function

(5 marks)

d) Determine whether the following sequence is monotonic or not and if it is bounded

 $\int_{1}^{3} \int_{x}^{x} \frac{y^{2}}{y^{3}} dy dx$

- $x_{n} = \frac{2n^{3} 3n}{5n^{3} + 4n^{2} 2} \qquad n \to \infty$
- e) Evaluate the limit of the sequence $\int \cos^8 x dx$
- **f)** Evaluate by reduction formula
- g) Evaluate iterated double integralQuestion Two

a) Evaluate

- $\sin 45^{\circ} = \frac{1}{\sqrt{2}} \qquad \cos 45^{\circ} = \frac{1}{\sqrt{2}}$ b) Given and approximate sin 44° by use of a Taylor's series expansion up to (5 marks)
 - $f(x) = \frac{k}{(1+x^2)}$ (-\infty,\infty) (-\infty,\infty)
 - c) The probability density function has the area under the curve on the interval equal to 1, determine the value of K. (6 marks)
- $\frac{dz}{dt} \quad Z = \ln(x^2 + y^2) \qquad x = e^{-t} \qquad y = e^t$ d) Find if given and (4 marks)

Question Three

a) Find the nth partial sum of the series hence the sum to infinity (4 marks) b) Determine by integration the area of the region lying inside the circle $r = 3\cos\theta$ on the positive x-axis and outside the cardiod (6 marks) $\{a_n\}$ $\{a_n\}$ $\frac{2}{1}, \frac{4}{3}, \frac{8}{5}, \frac{16}{7}, \frac{32}{9}, \dots$

c) Find a sequence whose first five terms are hence determine whether it converges or diverges (5 marks)

 $\lim_{x\to 0^+} x^x$ e

(5 marks)

(5 marks)

(3 marks)

(5 marks)

 $\{b_n\} = \frac{2n}{1+n}$

(3 marks)

as the sum of its Taylor series centred at

d) Represent **Question Four**

(5 marks)

(8 marks)

 $f(x) = \frac{1}{x}$ is

- a) Explain what is meant by continuity of a function, hence determine whether the function continuous within the interval (0, 1) (6 marks)
- b) Two police road-blocks are 10km apart on a highway. As a car passes the first road-block its speed is clocked at 60kmh⁻¹. Five minutes later when the car passes the second road block, its speed is clocked at 45kmh⁻¹. Prove that the car must had exceed the speed limit of 100kmh⁻¹ at some point during the five minutes.
 (6 marks)
- c) Using double integration, determine the volume of the solid generated by revolving the ellipse x^2 , y^2 ,

$$\frac{x}{a^2} + \frac{y}{b^2} = 1$$

about x – axis

 $f(x) = \sin x$

Question Five

a) Use ratio test to determine whether the series converges or diverges (5 marks) $x^2 + y^2 = 6^2$ b) Determine the surface area generated by revolving the circle about the x-axis (5 marks) $r \cos(\theta - \frac{\pi}{3}) = 3$ c) Determine the Cartesian equation for the curve (4 marks) z = x + y + zd) Find the volume in the first octant between the planes z = 0 and and inside the cylinder $x^2 + y^2 = 16$

(6 marks)