TECHNICAL UNIVERSITY OF MOMBASA
 Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR DEGREE OF:
BACHELOR OF SCIENCE IN CIVIL ENGINEERING
BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING BACHELOR OF SCIENCE IN ELECTRICAL \& ELECTRONIC ENGINEERING

SMA 2270/SMA 2277: CALCULUS III

END OF SEMESTER EXAMINATION
 SERIES: DECEMBER 2014
 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FOUR questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

$$
\lim _{x \rightarrow 0^{+}}\left(\frac{1}{\sin ^{2} x}-\frac{\cot x}{x}\right)
$$

a) Evaluate
b) Show that the function

Find the appropriate value of C

$$
f(x)=x-x^{3} \quad-1 \leq x \leq 0 \quad 0 \leq x \leq 1
$$

on the interval and satisfies Rolle's theorem.
(5 marks)

$$
f(x)=\frac{1}{x}
$$

c) Compute the fifth order Taylor's polynomial P^{5} at $\mathrm{a}=1$ for the function

$$
\left\{b_{n}\right\}=\frac{2 n}{1+n}
$$

d) Determine whether the following sequence is monotonic or not and if it is bounded
(3 marks)

$$
x_{n}=\frac{2 n^{3}-3 n}{5 n^{3}+4 n^{2}-2} \quad n \rightarrow \infty
$$

e) Evaluate the limit of the sequence as
(3 marks)

$$
\int \cos ^{8} x d x
$$

f) Evaluate
by reduction formula
(5 marks)

$$
\int_{1}^{3} \int_{x^{1 / 3}}^{x} \frac{y^{2}}{x} d y d x
$$

g) Evaluate iterated double integral
(5 marks) Question Two

$$
\lim _{x \rightarrow 0^{+}} x^{x}
$$

a) Evaluate
(5 marks)

$$
\sin 45^{\circ}=\frac{1}{\sqrt{2}} \quad \cos 45^{\circ}=\frac{1}{\sqrt{2}}
$$

$\begin{array}{lr}\text { b) Given and } & \text { approximat } \\ \mathrm{x}^{3} & f(x)=\frac{k}{\left(1+x^{2}\right)}\end{array}$ (5 marks)

$$
f(x)=\frac{k}{\left(1+x^{2}\right)}
$$

c) The probability density function
has the area under the curve on the interval equal to 1 , determine the value of K .

$$
\frac{d z}{d t} \quad Z=\ln \left(x^{2}+y^{2}\right) \quad x=e^{-t} \quad y=e^{t}
$$

d) Find if given and

Question Three

$$
\sum_{n=1}^{\infty} \frac{1}{2^{n}}
$$

a) Find the nth partial sum of the series hence the sum to infinity

$$
r=3 \cos \theta
$$

b) Determine by integration the area of the region lying inside the circle on the positive x -axis

$$
r=1+\cos \theta
$$

and outside the cardiod
(6 marks)

$$
\left\{a_{n}\right\} \quad \frac{2}{1}, \frac{4}{3}, \frac{8}{5}, \frac{16}{7}, \frac{32}{9}, \ldots
$$

c) Find a sequence whose first five terms are hence determine whether it converges or diverges

$$
f(x)=\sin x \quad \frac{\pi}{3}
$$

d) Represent as the sum of its Taylor series centred at Question Four
a) Explain what is meant by continuity of a function, hence determine whether the function continuous within the interval $(0,1)$
b) Two police road-blocks are 10 km apart on a highway. As a car passes the first road-block its speed is clocked at $60 \mathrm{kmh}^{-1}$. Five minutes later when the car passes the second road block, its speed is clocked at $45 \mathrm{kmh}^{-1}$. Prove that the car must had exceed the speed limit of $100 \mathrm{kmh}^{-1}$ at some point during the five minutes.
(6 marks)
c) Using double integration, determine the volume of the solid generated by revolving the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

$$
\begin{equation*}
\text { about } \mathrm{x} \text { - axis } \tag{8marks}
\end{equation*}
$$

Question Five

$$
\sum \frac{n!n!}{(2 n)!}
$$

a) Use ratio test to determine whether the series

> converges or diverges
(5 marks)

$$
x^{2}+y^{2}=6^{2}
$$

b) Determine the surface area generated by revolving the circle
about the x -axis
(5 marks)

$$
r \cos (\theta-\pi / 3)=3
$$

c) Determine the Cartesian equation for the curve

$$
\begin{equation*}
z=x+y+z \tag{4marks}
\end{equation*}
$$

d) Find the volume in the first octant between the planes $\mathrm{z}=0$ and $x^{2}+y^{2}=16$ and inside the cylinder (6 marks)

