

TECHNICAL UNIVERSITY OF MOMBASA
 Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR THE BACHELOR OF SCIENCE IN ELECTRICAL \& ELECTRONIC ENGINEERING BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING (BSCE/BSME)

SMA 2270/2173: CALCULUS III

SPECIAL/SUPPLEMENTARY EXAMINATION
 SERIES: OCTOBER 2013
 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
SECTION A (COMPULSORY)
Question One

$$
f(x)=e^{x}
$$

a) Verify the mean value Theorem for the function
in $(0,1)$
(5 marks)

$$
w=x+\frac{y-x}{z-y} \quad \frac{\delta w}{\delta x}+\frac{\delta w}{\delta y}+\frac{\delta w}{\delta z}
$$

b) Given that
evaluate the value of

$$
\int_{0}^{2} \int_{2}^{4}\left(x^{2} y+x y\right) d y d x
$$

c) Evaluate the following double integral
d) Find a rational number corresponding to the infinite decimal number 1.211111...

$$
\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e
$$

e) show that
f) Determine with proof, whether the following sequences converge or diverge

$$
a_{n}=\frac{4}{\sqrt{n+1}}
$$

(i)

$$
a_{n}=2+\cos n \pi
$$

(ii)

SECTION B (Answer any TWO questions from this section)

Question Two

$$
\begin{equation*}
\frac{d z}{d t} \quad z=x^{2} y+3 x y^{4} \quad x=\sin 2 t \quad y=\cos t \tag{6marks}
\end{equation*}
$$

a) Find , when $t=0$ given that $\quad x$ where and
b) Show that:

$$
\begin{equation*}
\int(\sec x)^{h} d x=\frac{1}{n-1} \tan x(\sec x)^{n-2}+\frac{n-2}{n-1} \int(\sec x)^{n-2} d x \tag{8marks}
\end{equation*}
$$

c) Evaluate the following limits

$$
\lim _{x \rightarrow \infty} \frac{\ln x}{x}
$$

(i)

$$
\lim _{x \rightarrow 0} \frac{\ln (\sin x)}{\ln (\tan x)}
$$

(ii)

Question Three

$$
f(x)=\frac{1}{x}
$$

a) What are the first five terms of the Taylors series generated by the function

$$
\sum_{n=1}^{\infty} \frac{x^{n}}{n}
$$

b) Find the interval of convergence of

$$
r=1-\cos \theta
$$

c) Determine the moment of inertia about the y-axis of the region enclosed by the cardial
(8 marks)

Question Four

$$
\lim _{x \rightarrow \infty}\left\{\frac{1}{x}-\frac{\log (1+x)}{x^{2}}\right\}
$$

a) (i) Evaluate
(5 marks)

$$
\int \cos ^{n} x d x=\frac{1}{n} \cos ^{n-1} x \sin x+\frac{n-1}{n} \int \cos ^{-2} x d x
$$

(ii) Show that
b) Find the Maclaurin series for coshx, expressing your result in sigma notation
c) State Rolle's Theorem hence find C in the interval $(-2,2)$ such that $f(x)=0$ for the function $f(x)=x^{4}-2 x^{2}$

Question Five

$$
f(x)=\frac{1}{x}
$$

a) Explain what is meant by continuity of a function hence determine whether the function continuous within the interval $(0,1)$
b) Two stationary patrol cars with raclars are 10km apart on a highway. As a truck passes the first patrol car, its peed is clocked at $60 \mathrm{~km}^{-} \mathrm{h}^{-1}$. Five minutes later when the truck passes the second patrol car. Its speed is clocked at $45 \mathrm{kmh}^{-1}$
Prove that the truck must have exceeded the speed limit of $60 \mathrm{kmh}-1$ at some point during the five minutes.
c) Using double integration, determine the volume of solid generated by revolving the ellipse. $\frac{x^{2}}{d^{2}}+\frac{y^{2}}{5^{2}}=1$
about x-axis
(8 marks)

