

TECHNICAL UNIVERSITY OF MOMBASA
Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR THE
BACHELOR OF TECHNOLOGY IN INFORMATION TECHNOLOY (BTIT)

AMA 4202: CALCULUS II

SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: OCTOBER 2013
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
SECTION A (COMPULSORY)
Question One
a) Given that:

$$
\sinh x=-5 / 12
$$

Find the value of
coth x

$$
\int_{2}^{3} \frac{x^{4}-2 x^{3}-4 x^{2}-4 x}{x^{3}+x^{2}-2 x} d x
$$

b) Evaluate:
(8 marks)
c) Find the volume generated by rotating the curve:

$$
\begin{align*}
& y=1 / 3\left(x^{2}+1\right)^{3 / 2} \quad 1 \leq x \leq 2 \\
& \text { about the } \mathrm{x} \text {-axis and } \\
& \frac{d^{2} y}{d x^{2}} \quad x=1-t^{2} \quad y=t-t^{3} \tag{5marks}
\end{align*}
$$

d) Find if and
e) Find the derivative of the following.

$$
\begin{equation*}
x y+x^{2} y^{3}=5 \tag{3marks}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{\pi} 2 \sin ^{2} x d x=\pi \tag{5marks}
\end{equation*}
$$

f) Using trapezoidal rule and taking $n=6$ show that

SECTION B (Answer any TWO questions from this section)

Question Two

$$
2 x^{2}-6 x+4 \quad a\left(u^{2} \pm A^{2}\right)
$$

a) Express in the form where a and A are real constants. Determine u

$$
y=x^{3}+2 x^{2}-5 x-6 \quad x=-3 \quad x=2
$$

b) Sketch the graph between and and determine the area enclosed by the curve and the x -axis.
coth 0.28
c) Find the numerical value of correct to 3 decimal places.

$$
\frac{d y}{d x}=\frac{y^{2}-1}{x}
$$

d) Solve the equation
(6 marks)

Question Three

$$
y=3 e^{x / 3}
$$

a) The area enclosed by the curve the axis and ordinates $x=-1$ and $x=3$ is rotated 360° about the x -axis. Determine the volume generated.

$$
1-\tanh ^{2} x=\sec ^{2} x
$$

b) Show that
(7 marks)

$$
\int_{2}^{3} \frac{Z+1}{\left(z^{2}+5 z+4\right)} d z
$$

c) (i) Evaluate

$$
\int \sec x d x=\ln (\sec x+\tan x)+c
$$

(ii) Show that

Question Four

$$
\int 2 x \sqrt{1+x^{2}} d x
$$

a) Find

$$
2 x^{2}+x y+3 y^{2}=16
$$

b) Find the slope and the equation of the tangent to the curve at the point $(1,2)$
(6 marks)

$$
y=3 \cosh (x / 3) \quad \frac{d^{2} y}{d x^{2}}=\frac{1}{3} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}}
$$

c) Show that
satisfy the differential equation
$2 x+5$
d) A curve passes through the point $(3,-1)$ and its gradient function is curve.
. Find the equation of the
(3 marks)

Question Five

$$
\int x^{2} e^{2} d x
$$

a) Use integration by parts method, find
$\frac{d^{2} y}{d x^{2}} \quad x=\cos 2 t \quad y=\sin t \quad t=\pi / 2$
b) Find at

$$
y=\frac{x^{2}-3}{2 x-4}
$$

c) Determine the asymptototes of the function
d) Find the surface area generated when the arc of the curve

$$
\begin{align*}
& x=3 t \\
& x=3 t-t^{3} \tag{5marks}\\
& \quad \text { between } \mathrm{t}=0 \text { and } \mathrm{t}=1 \text { rotates on } \mathrm{x} \text {-axis through } 2 \pi
\end{align*}
$$

