

TECHNICAL UNIVERSITY OF MOMBASA
 Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR DEGREE OF:
BACHELOR OF SCIENCE IN INFORMATION TECHNOLOGY
BACHELOR OF SCIENCE IN CIVIL ENGINEERING BACHELOR OF SCIENCE IN ELECTRICAL \& ELECTRONIC ENGINEERING BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING (BSIT 12J, BSEE 14G, BSME 14G, BSCE 14G)

AMA 4103 SMA 2101: CALCULUS I

END OF SEMESTER EXAMINATION
 SERIES: DECEMBER 2014
 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FOUR questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

$$
f(x)=x^{3} \quad g(x)=3 x+8
$$

a) Given the function and
$(f \circ g)(x)$
(i) Obtain the composite function
(2 marks)
(ii) Determine the domain and range of the function (i) above
b) Determine the value of k for the following function to be continuous:

$$
f(x)=\left\{\begin{array}{cc}
3 x^{2}+1 & x \leq 1 \tag{2marks}\\
k x+1 & x>1
\end{array}\right.
$$

$\frac{d y}{d x}$
c) Find if:

$$
y=\cos \left(\cos \left(\cos x^{2}\right)\right)
$$

(i) $y=x^{2} \cot x$
(ii)
d) Evaluate the following limits

$$
\lim _{x \rightarrow 49} \frac{x-49}{6-\sqrt{x-13}}
$$

(i)

$$
\lim _{x \rightarrow-2} \frac{x+2}{x^{2}+x-2}
$$

(ii)
e) Differentiate from first principles

$$
y=\sqrt{x-2}
$$

f) The surface area of a spherical cell S , is proportional to the radius r , and is given by:

$$
S=4 \pi r^{2}
$$

Determine the rate of growth of the surface area when $r=10 \mu \mathrm{~m}$, given
growing at $0.1 \mu \mathrm{~m} / \mathrm{s}$
the radius is
(3 marks)

Question Two

a) A curve is defined parametrically by:

$$
y=\frac{2 t}{1+t}, x=\frac{1-t^{2}}{1+t^{2}}
$$

Find its gradient when $t=1$

$$
y=x^{3}-6 x^{2}+9 x-2
$$

b) The equation of a curve is given by
(i) Find the turning points and distinguish between them
(ii) Hence sketch the graph of the curve

$$
3 y=6 t-5 t^{3}
$$

c) Determine the equation of the normal to the curve

$$
\begin{equation*}
\text { at }(1,1 / 3) \tag{4marks}
\end{equation*}
$$

Question Three

a) A rectangular box whose length is twice its width has total surface area of $300 \mathrm{~cm}^{2}$. Find the dimensions of the box that would give it maximum volume.

$$
y=\tan ^{-1} \frac{2 x}{1-x^{2}} \quad \frac{d y}{d x}=\frac{2}{1+x^{2}}
$$

b) If
show that
c) A particle P travels in a straight line $A B$, its distance x, from A at the end of t seconds being given by: $x=2 t^{3}-15 t^{2}+36 t+20$
(i) Find the time(s) at which the particle is stationary and the distance (s) from A when this happens.
(4 marks)
(ii) Find the time at which the particle attains a constant velocity

Question Four

$$
f(x)=2 x+1 \quad g(x)=\frac{x}{3} \quad(g \circ f)^{-1}=f^{-1} \circ g^{-1}
$$

a) Let and show that
(7 marks)

$$
f(0)=8 \quad f(0)=5 \quad g(0)=2 \quad g^{\prime}(0)=1 \quad h(x)
$$

b) Given that and

$$
\begin{align*}
& h(x)=\frac{f(x)}{g(x)}+3 x^{2}+4 x \\
& \frac{d y}{d x} \tag{4marks}
\end{align*}
$$

c) Determine if:

$$
x^{2}+2 x y+y^{3}=5
$$

(i)

$$
y=e^{\sqrt[3]{x^{2}-1}}
$$

(ii)

Question Five

$$
\begin{equation*}
f(x) \tag{3marks}
\end{equation*}
$$

a) Determine continuity of a function at a point $\mathrm{x}=\mathrm{b}$

$$
f(x)=\frac{x^{2}+x-6}{x^{2}-4}
$$

b) Define so that it is continuous at $\mathrm{x}=2$

$$
\begin{equation*}
x y+2 x-y=0 \tag{3marks}
\end{equation*}
$$

c) Find the normal to the curve that is parallel to the line $2 x+y=0$
d) Define the limit of a function $f(x)$ at a point $x=a$

