

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 CERTIFICATE (UPGRADING MATHEMATICS)

AMA 1103: CALCULUS
SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: OCTOBER 2013
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions

Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

SECTION A (COMPULSORY)

Question One

a) (i) Define differentiation
(ii) Define integration
b) Differentiation:

$$
y=(x+1)(x-5)
$$

(i)

$$
\begin{equation*}
y=\frac{x^{4}+6 x^{2}}{2 x^{2}} \tag{3marks}
\end{equation*}
$$

(ii)
c) Integrate:

$$
\int_{-2}^{0} x^{4}-2 x 3+x^{2}-x
$$

(i)

$$
\int_{0}^{\pi / 2} x+\cos ^{2} x d x
$$

(ii)
d) The velocity (v) of a moving projectile in terms of t is given by:

$$
v=t^{2}-3 t+2 \mathrm{~m} / \mathrm{s}
$$

If its distance from the origin after $t=2$

SECTION B (Answer any TWO questions from this section)

Question Two

a) (i) Define normal and tangent to a curve

$$
y=3 x^{2}+2 x-5
$$

(ii) Find from first principles the derivative of:
b) Integrate:

$$
\left.\int\left(x+\frac{1}{\sqrt{x}}\right) x+1 / x\right) d x
$$

(i)

$$
\int_{0}^{\pi / 6} 2 \cos 2 x+3 \sin 4 x
$$

(ii)

Question Three

a) Differentiate;

$$
y=5 \sin ^{2} x
$$

(i)

$$
\begin{equation*}
y=\sqrt{1+x^{2}} \tag{5marks}
\end{equation*}
$$

(ii)
b) A moving particle in a straight line describes the distance (s) and time (t) seconds as:

$$
S=6 t-t^{2}
$$

Find:
(i) Distance after $t=2$
(ii) velocity at $\mathrm{t}=2$
(iii) Its acceleration at $t=2$
(iv) Its average velocity $\mathrm{t}=1$ and $\mathrm{t}=4$

Question Four

a) Find and determine the turning points of the function:

$$
y=5+24 x-9 x^{2}-2 x^{2}
$$

$$
y=x^{3}+1
$$

b) Evaluate the area enclosed by the x -axis $\mathrm{x}=1$ and $\mathrm{x}=3$ and the graph

$$
y=\left(x^{2}-3 x\right)^{3}
$$

c) If

$$
\frac{d y}{d x}
$$

Find when $\mathrm{x}=2$

Question Five

a) Differentiate:

$$
y=\frac{1-x^{2}}{1+x^{2}}
$$

(i)

$$
\begin{equation*}
y=\left(1 / x^{2}\right)^{1 / 3} \tag{5marks}
\end{equation*}
$$

(ii)
b) Integrate:

$$
\int \frac{8 x-3 x}{x^{3}} d x
$$

(i)

$$
\int_{1}^{4} \frac{(x+3)(x-3)}{\sqrt{x}} d x
$$

(ii)
c) Find the equation of the normal to the curve:

$$
y=x^{3}-9 x^{2}+20 x-8
$$

