

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSISCS

CERTIFICATE IN UPGRADING MATHEMATICS

AMA 1003: CALCULUS

END OF SEMESTER EXAMINATION SERIES: DECEMEBER 2014 TIME ALLOWED: 2 HOURS

Instructions to Candidates: You should have the following for this examination - Answer Booklet This paper consist of FIVE questions Answer question ONE (COMPULSORY) and any other TWO questions Maximum marks for each part of a question are as shown

Question One (Compulsory)

a) (i) A straight line pass trough point A(-3, 2) and B(2, 12). Determine the equation of the line.

(ii) One straight line passes through A(3, 2) and B(6, 8) another straight line passes through C (2,4) and D (4, 2). Determine the point of intersection of the two lines (4 marks)

b) Determine, numerically:

 $\lim_{x \to 2} \frac{x^2 + 4x + 4}{x + 2}$ (i) (3 marks) $\lim_{x \to +\infty} \frac{2x+2}{x}$ (ii) (3 marks) f(x)

c) Determine the domain of if: $f(y) = 3y^2 = 0$

(i)

$$f(x) = \frac{3x}{x^2 - 25}$$
(1 mark)
(1 mark)
(2 marks)

$$f(x) = 2x + 2$$
 $g(x) = x^2 + 1$
d) Given and

 $R = 120x - \frac{x^2}{500}$

determine gof

e) The revenue R1 of a firm is given by, units = no of units (sold)

$$f'(1) = 2\frac{x_2 + 2x}{x^2 + 3x}$$

f) Determine the f(i) if

g) Determine the derivative, f'(x) from first principles if

Question Two

$$f(x) = \begin{cases} 6x & if \ 0 \le x < 2\\ 10 & if \ x = 2\\ 3x + 6 & if \ 2 < x \le 3 \end{cases}$$
a) If
is the function differentiable at x = 2
(4 marks)
y = x³ + 2x
b) Determine the equation of a tangent to the curve
at x= 2
(4 marks)

b) Determine the equation of a tangent to the curve at x = 2 (3 marks)

(2 marks)

determine the instantaneous revenue at x = 2500

(3 marks)

 $f(x) = 2x^2 + 4$

(3 marks)

93 marks)

c) d)	Differentiate $f(x) = 3x.\sin x$ if (i) $f(x) = e^{3x^{2}}$ (ii) (i) Identify all the turns point for the curve $Y = x^{3} - 6x^{2} + 9x + 30$	(2 marks) (3 marks) (3 marks)		
	(ii) Which of the points is the graph having a maximum value?(iii) What is the maximum value of Y	(2 marks) (2 Marks)		
Qu	lestion Three			
a)	 The revenue R = x (350 – x) of a firm is the number of units and sold. Required: (i) The Marginal revenue function (ii) The revenue maximizing units (x) (iii) The maximum revenue marks) 	(2 marks) (2 marks) (2		
	$x^2 - y^2 = 36$			
b)	(i) Determine the domain of the function h(x) = -x + 3 $a(x) = 4x + 4$			
	(ii) and determine (hog) (2)	(5 marks)		
	$f(x) = x^2 - 3x + 2$			
c)	Sketch the graph of	(4 marks)		
Question Four				
	$\lim_{x\to +\infty} 1 - e^{-04x}$			
a)	Determine	(3 marks)		
	\underline{dc}			
b)	The change in revenue with respect to change in units produced dx of a firm is: $\frac{dR}{dx} = 50x - x^2$			
	(i) Determine the total revenue function(ii) Sketch the revenue curve	(4 marks) (4 marks)		
	$\int_0^1 (x + 1)^3 dx$			
c)	Evaluate	(4 marks)		

	f'(1)	$f(x) = \left(x^2 + 4x\right)^4$	
Evaluate	if	by method of substitution	(5 marks)

Question Five

d)

$$\frac{dy}{dx} = 2x + 3$$

- a) The gradient function of a curve is determine the equation of if the curve Given it passes through point A (2, 10) (4 marks)
- **b)** (i) Use the trapezium rule, with 5 ordinates to evaluate: $\int_0^1 2x^2 dx$
 - (ii) Determine the error in using the trapezium rule
- **c)** Use first principles to evaluate f'(2) if $f(x) = x^2 + 3$

(6 marks)

(4 marks)

(6 marks)