THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE (A Constituent College of JKUAT)

(A Centre of Excellence) Faculty of Applied \& Health Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
PRECERTIFICATE IN INFORMATION TECHNOLOGY

AMA 1000: FUNDAMENTALS OF MATHS
END OF SEMESTER EXAMINATION
SERIES: AUGUST 2012
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions in TWO sections A \& B

Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages
SECTION A (COMPULSORY)

Question One (20 marks)

a) Define the following terms as used in Mathematics:
i) Naperian logs
(1 marks)
ii) Series
b) Transpose the Formular to make f the subject of the formula.

$$
\begin{equation*}
\frac{R}{r}=\sqrt{\frac{f+p}{f-p}} \tag{4marks}
\end{equation*}
$$

$$
X=\frac{-b}{2 a} \pm \sqrt{\frac{b^{2}-4 a c}{2 a}} \quad a \neq 0
$$, and hence solve the equation

d) Solve for the unknowns in the following set of equations
$3 x+2 y-z=19$
$4 x-y+2 z=4$
$2 x+4 y-5 z=32$

$$
\log _{2}^{x}+\log _{3}^{x}+\log _{4} x=7.079 \log _{10} x
$$

e) Show that

SECTION B (Answer any TWO questions from this section)

Question Two (20 marks)

a) Solve the following simultaneous equations
$7 x-4 y=23$
$4 x-3 y=11$
b) Simplify the following, giving your answer without fractional indices.
$F=\sqrt[3]{a^{6} b^{3}} \div \sqrt{\frac{1}{9} a^{4} b^{6}} \times\left(4 \sqrt{a^{6} b}\right)^{-1 / 2}$
c) (i) Find

$$
V=\frac{\pi h}{6}\left(3 R^{2}+h^{2}\right)
$$

$$
h=2.85, R=6.24
$$

(ii) If , determine the value of V when
(2 marks)

$$
\left(1+\frac{1}{2} x\right)^{6}
$$

d) Obtain the first four terms of \quad and use it to estimate the value of $(1.005)^{6}$.

Question Three (20 marks)

a) Solve the equation below
$5.4^{x+3} \times 8.2^{2 x-1}=4.8^{3 x}$
b) Determine whether or not the following set of equations can each be expressed as a product of linear factors.
$4 x^{2}+3 x-4$
i)
$6 x^{2}+7 x+2$
ii)
$3 x^{2}+x-4$
iii)
$7 x^{2}-3 x-5$
iv)
c) Solve the following pair of equations

$$
\begin{aligned}
& 2(x+2 y)+3(3 x-y)=38 \\
& 4(3 x+2 y)-3(x+5 y)=-8
\end{aligned}
$$

d) The hypotenuse of a right angled triangle is 13 cm . Find the length of other two sides if their difference is 7 cm .
e) The sum of twice a number and its square is 48 . Find the numbers.

Question Four (20 marks)

$$
S n=\frac{a\left(1-r^{n}\right)}{1-r}
$$

a) Show that the sum of n terms of a geometric series is given by

$$
2+4+8+16+----
$$

b) given the series , find
i) The common ratio r
ii) The sum of the first 5 terms
c) Insert 3 geometric means, A, B, C between 56 and 896 .
d) The fourth term of an Arithmetic progression is 22 and the $7^{\text {th }}$ term is 40 . Determine the first term, the common difference and hence the sum of the first 12 terms.

Question Five (20 marks)
a) Define the following terms:
i) Null matrix
(1 mark)
ii) Order of a matrix
b) Given the following matrices

Find $\begin{array}{rrr}\text { (i) } & \mathrm{AB} \\ & \text { (ii) } & \mathrm{A}+ \\ & \text { (iii) } & \mathrm{B}^{2}\end{array}$
Find $\begin{array}{rr}\text { (i) } A B \\ & \text { (ii) } A+3 \\ & \text { (iii) } B^{2}\end{array}$
(3 marks)
$\begin{array}{ccl}\text { Find } & \text { (i) } & A B \\ & \text { (ii) } & A+3 B \\ & \text { (iii) } & B^{2}\end{array}$
(3 marks)
Find $\begin{array}{rrr}\text { (i) } & \mathrm{AB} \\ & \text { (ii) } & \mathrm{A}+ \\ & \text { (iii) } & \mathrm{B}^{2}\end{array}$

$$
A=\left(\begin{array}{ll}
3 & 4 \\
2 & 2
\end{array}\right), B=\binom{6}{5}, C=\left(\begin{array}{ll}
2 & 1 \\
1 & 5 \\
7 & 6
\end{array}\right)
$$

c) Given the matrices state the order of each of the matrices and hence state whether these matrices are compatible under multiplication.
d) Rationalize the following:
$\frac{1}{3+\sqrt{2}}$
e) Express the following as roots of a single compound number.
$4 \sqrt{3}$
i)
$4 \sqrt{3}$
$5 \sqrt{7}$
ii)

$$
A=\left(\begin{array}{ll}
5 & 8 \\
2 & 5
\end{array}\right), \mathbf{B}=\left(\begin{array}{ll}
2 & 6 \\
3 & 3
\end{array}\right)
$$

(

