

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT) (A Centre of Excellence)

Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

PRECERTIFICATE IN INFORMATION TECHNOLOGY

AMA 1000: FUNDAMENTALS OF MATHS

END OF SEMESTER EXAMINATION SERIES: AUGUST 2012 TIME: 2 HOURS

Instructions to Candidates: You should have the following for this examination - Answer Booklet This paper consist of FIVE questions in TWO sections A & B Answer question **ONE (COMPULSORY)** and any other **TWO** questions Maximum marks for each part of a question are as shown This paper consists of **FOUR** printed pages **SECTION A (COMPULSORY)**

Question One (20 marks)

- a) Define the following terms as used in Mathematics:
 - i) Naperian logs
 - ii) Series
- **b)** Transpose the Formular to make f the subject of the formula.
- $\frac{R}{r} = \sqrt{\frac{f+p}{f-p}}$ (4 marks) $X = \frac{-b}{2a} \pm \sqrt{\frac{b^2 - 4ac}{2a}}$ (2) In quadratic equations, show that $5x^2 + 12x + 3 = 0$ (3) Solve for the unknowns in the following set of equations 3x + 2y - z = 19 4x - y + 2z = 4 2x + 4y - 5z = 32(6 marks) $\log_2^x + \log_3^x + \log_4 x = 7.079 \log_{10} x$

e) Show that

SECTION B (Answer any TWO questions from this section)

Question Two (20 marks)

a) Solve the following simultaneous equations 7x - 4y = 234x - 3y = 11

(4 marks)

b) Simplify the following, giving your answer without fractional indices. (6 marks)

 $F = \sqrt[3]{a^6 b^3} \div \sqrt{\frac{1}{9} a^4 b^6} \times \left(4\sqrt{a^6 b}\right)^{-\frac{1}{2}}$ (6 marks)

(3 marks)

(1 marks)

(1 mark)

$$\log_7 83.64$$
c) (i) Find (4 marks)

$$V = \frac{\pi h}{6} (3R^2 + h^2)$$
(ii) If , determine the value of V when (2 marks)
(2 marks)

$$\left(1+\frac{1}{2}x\right)^{6}$$

d) Obtain the first four terms of $(1.005)^6$. **(4 marks)**

Question Three (20 marks)

a) Solve the equation below $5.4^{x+3} \times 8.2^{2x-1} = 4.8^{3x}$

(5 marks)

b) Determine whether or not the following set of equations can each be expressed as a product of linear factors.

iv)	$7x^2 - 3x - 5$	(1 mark)
iii)	$3x^{-} + x - 4$	(1 mark)
ii)	\mathbf{D}^2	(1 mark)
i)	$6x^2 + 7x + 7$	(1 mark)
	$4x^2 + 3x - 4$	

c) Solve the following pair of equations 2(x+2y) + 3(3x-y) = 38

4(3x+2y) - 3(x+5y) = -8

- d) The hypotenuse of a right angled triangle is 13cm. Find the length of other two sides if their difference is 7cm. (5 marks)
- e) The sum of twice a number and its square is 48. Find the numbers. (2 marks)

Question Four (20 marks)

-	$Sn = \frac{a(1-r^n)}{1-r}$	
a)	Show that the sum of n terms of a geometric series is given by	(7 marks)
	2 + 4 + 8 + 16 +	
b)	given the series , find	
	i) The common ratio r	
	ii) The sum of the first 5 terms	(4 marks)

© 2012 - The Mombasa Polytechnic University College

- c) Insert 3 geometric means, A, B, C between 56 and 896.
- d) The fourth term of an Arithmetic progression is 22 and the 7th term is 40. Determine the first term, the common difference and hence the sum of the first 12 terms. (5 marks)

Question Five (20 marks)

- **a)** Define the following terms:
 - i) Null matrix

b) Given the following matrices

ii) Order of a matrix

$A = \begin{pmatrix} 5 & 8 \\ 2 & 5 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 2 & 6 \\ 3 & 3 \end{pmatrix}$

- Find (i) AB (ii) A+3B (iii) B²
 - $A = \begin{pmatrix} 3 & 4 \\ 2 & 2 \end{pmatrix} B = \begin{pmatrix} 6 \\ 5 \end{pmatrix} C = \begin{pmatrix} 2 & 1 \\ 1 & 5 \\ 7 & 6 \end{pmatrix}$
- c) Given the matrices state the order of each of the matrices and hence state whether these matrices are compatible under multiplication. (6 marks)
- d) Rationalize the following:

3

$$\frac{1}{+\sqrt{2}}$$
 (2 marks)

e) Express the following as roots of a single compound number.

•、	$4\sqrt{3}$	
1)	$5\sqrt{7}$	(1 mark)
ii)		(1 mark)

(3 marks)

(1 mark)

(1 mark)

(3 marks)

(3 marks)

(3 marks)