

TECHNICAL UNIVERSITY OF MOMBASA
 Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR DEGREE OF:
BACHELOR OF SCIENCE IN STATISTICS \& COMPUTER SCIENCE BACHELOR OF MATHEMATICS \& COMPUTER SCIENCE (BMCS/BSSC)

AMA 4208: ALGEBRAIC STRUCTURES
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2014
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)
a) Define the following notions:
(i) Grupoid
(ii) Group
(iii) Semi Group
(iv)Ring
(v) Normal subgroup
$\phi(n)$
b) Let G be a cyclic group of order n generated by a, show that G has
generators.
(4 marks)
c) Show that anon empty subset H of G is a subgroup if and only if:

$$
a, b \in, H \Rightarrow a \cdot b \in H
$$

(i)

$$
a \in H \Rightarrow a^{-1} \in H
$$

(ii)
(4 marks)
d) Show that the algebraic structure $\left(\mathrm{Z}_{5}+_{5}\right)$ forms a Abelion group
(4 marks)
e) Show that the algebraic structure formed by the set of natural numbers under ordinary addition is a semi group
(2 marks)
$H=\{0,2,4\}$
f) Given the algebraic structure $\left(\mathrm{Z}_{6},+_{6}\right)$, show that is its subgroup
(2 marks)
g) Let R be the set of integers show that the structure of R forms a ring under ordinary addition and multiplication.
(4 marks)
h) Let R be on a algebraic structure under addition modulo 5 and multiplication modulo 5 respectively. Show that it is indeed a field
(3 marks)
i) Show that the algebraic structure $G\{1,-1, i,-1\}$ forms an Abelian group under ordinary multiplication

Question Two

a) Show that the set G composed of $\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ of four mappings as of the set of all complex numbers defined by $P_{0}(z)=z, P_{1}(z)=-z, P_{2}(z)=1 / z$ and $P_{3}(2)=-1 / z$ forms an algebraic structure which is an abelion group
b) Given the algebraic structure $\left(\{1,2,3,4\}, X_{5}\right)$. Find its generators

$$
T: T \rightarrow \cup
$$

c) Let $6: 5 \mathrm{~T}$ and , show that:
(i) 60 T is onto if each 6 and T is onto
(ii) 60 T is one to one if each of 6 and T is one to one
(4 marks)

$$
\{1,-1, i,-i\}
$$

d) Given two algebraic structures $\{1,-1\}$ and $\{1,-1, i,-1\}$ show that $\{1,-1\}$ is a subgroup of
(4 marks)

Question Three

a) Let a be an algebraic structure consisting of integers under addition. Let it be even subsets of G. Find the cosets of H and G
(4 marks)
b) State and proof the Lagrange's theorem
(5 marks)
c) Given an algebraic structure $\left(\mathrm{H}_{3},+\right)$ where $\mathrm{H}_{3}=\{\ldots .-3,0,3 \ldots$.$\} :$
(i) Find the left and right cosets of H in z where Z is a group under ordinary addition
d) Make and complete any cayley table to show a commutative relation under addition modulo 4 of integers
(3 marks)

Question Four

a) Show that an algebraic structure formed from the set of rational numbers under ordinary addition and multiplication forms a ring with unit element
(7 marks)
$\left(z_{5,},{ }_{5}, x_{5}\right)$
b) Show that forms a field
c) Show that the polynomial over a ring R forms a ring with respect to addition and multiplication of polynomial

Question Five

a) Show that the set of complex numbers C forms a field under the operations of $(a+b i)+(c+d i)=(a+$ $b)+(c+d) i$ and $(a+b i) .(c+d i)=(a c-b d)+(a d+b c)$ forms a field
$f: \mathfrak{R} \rightarrow \mathfrak{R} \quad g: \mathfrak{R} \rightarrow R \quad f(x)=x+2 \quad g(x)=\frac{1}{\left(x^{2}+1\right)}$
b) Let and be defined by and

Find:
(i) $g^{\circ} f(x)$
(ii) $\mathrm{f}^{\circ} \mathrm{g}(\mathrm{x})$
(iii) $\left(f^{\circ} g\right)^{-1}(x)$ marks)
(3 marks)
(3 marks)
c) Show that $\left(G=\{0,1,2,3\},+_{4}\right)$ is a cyclic group
d) Make a cayley table to define an associative binary operation on $S=\{a, b, c, d\} u n d e r ~ o r d i n a r y ~$ addition
(2 marks)

