

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR DEGREE OF:

BACHELOR OF SCIENCE IN ELECTRICAL & ELECTRONIC ENGINEERING BACHELOR OF SCIENCE IN CIVIL ENGINEERING BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING BACHELOR OF SCIENCE IN STATISTICS & COMPUTER SCIENCE (BSEE. BSCE, BMAE, BMCS, BSSC)

AMA 4101/SMA 2170: ALGEBRA

END OF SEMESTER EXAMINATION SERIES: DECEMBER 2014 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables

- Scientific Calculator

This paper consist of **FIVE** questions Answer question **ONE** (**COMPULSORY**) and any other **TWO** questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

Question One (Compulsory)

 $Z_1 = 2 + j4 \qquad Z_2 = 3 - j$ a) Given and determine: $Z_1 + Z_2$ (i) $Z_1 - Z_2$ (ii) and show the results on an Argand diagram

(6 marks)

b) What is the smallest number of terms of the G.P 8 + 24 + 72 + --- that will give a total greater than 6,000,000? (6 marks)

C)	$\frac{1}{5-\sqrt{3}}$ Rationalize the denominator of	(3 marks)		
-)	$\left(x - \frac{y}{2}\right)^{16}$	(0)		
d)	Find the expansion of as far as the term containing y^4	(4 marks)		
e)	Solve by completing squares $dx^2 + bx + c = 0$	(5 marks)		
f)	$\log_2(x+3) + \log_2(2x+7) = 8$ Solve the following equation given that	(6 marks)		
Question Two				
a)	$-\frac{1}{6}$ If the second term of a G.P is and the fourth term is , find the first term, t and the sum of the first 50 terms:	he common ratio (10 marks)		
b)	$8^{3x+2} = 5^{2x-7}$ Solve	(5 marks)		
c)	How many ways can a committee of 5 be selected from 8 men and 5 women if majority of women servying?	there must be a (5 marks)		
Question Three				
a)	α β $x^2 - px + q = 0$ If and are the roots of the equation , Form the equation whose $\frac{\beta}{r^2}$	roots are $\frac{\alpha}{\beta^2}$ and		
	α^{-} $5x^{4} + 2x^{3} + 4$	(8 marks) x −115		
b)	State the remainder theorem and use it to obtain the remainder when by $x + 3$.	is divided (5 marks)		

- c) Evaluate (i) $\frac{\frac{2}{(1+j)^4}}{\left(\frac{1+j3}{1-j2}\right)^2}$

(ii) Question Four

(3 marks)

(4 marks)

 $\sqrt{(3x+1)} - (x+4) = 1$

a) Solve the equation

$$\log_a b = \frac{1}{\log_b a}$$

- b) Show that
- (5 marks) c) A given mass of air expands adiabatically and the following measurements are taken of pressure (Pcm) and volume (Vcm³):
 - V 100 125 150 175 200 32.8 Р 58.6 42.4 27.0 22.3

Confirm that $P = KV^n$ and determine the values of the constant k and n (8 marks)

Question Five

	(0.9	7) ⁶	
a)	Evaluate	correct to 4 significant figures using the binomial expansion.	(6 marks)
b)	lc Solve for x	$g_3 x - 4 \log_x 3 + 3 = 0$	(10 marks)

c) Find the least values of $13 + 6x + 3x^2$ (4 marks)

(7 marks)