

TECHNICAL UNIVERSITY OF MOMBASA
 Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR THE BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING/CIVIL AND BUILDING/ELECTRICAL \& ELECTRONICS ENGINEERING

SMA 2170: ALGEBRA

SPECIAL/SUPPLEMENTARY EXAMINATION
 SERIES: OCTOBER 2013
 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

SECTION A (COMPULSORY)

Question One

$$
1^{3}+2^{3}+3^{3}+\ldots . .+n^{3}=1 / 4 n^{2}(n+1)^{2}
$$

a) Prove by induction that:
b) Simplify:

$$
\frac{\sqrt{1+3 x} \sqrt[4]{1+x}}{(1+x / 2)^{3}}
$$

given that powers of x above the first may be neglected
c) Prove that:

$$
\begin{equation*}
2 \log _{c}(a+b)=2 \log _{c} a+\log _{c}\left(1+\frac{2 b}{a}+\frac{b^{2}}{a^{2}}\right) \tag{5marks}
\end{equation*}
$$

$$
5 x^{2}+7 x-9=0 \quad \alpha \text { and } \quad \beta
$$

d) The roots of the equation are . Determine:

$$
1 / \alpha+1 / \beta
$$

(i)

$$
\alpha^{2}+\beta^{2}
$$

(ii)

$$
i\left(\frac{1+4 i}{1-3 i}\right)^{2}
$$

e) Evaluate:
f) The fifth and sixth term of a G.P are 6 and 9 respectively. Determine the Fourth term

SECTION B (Answer any TWO questions from this section)

Question Two

$$
\frac{15!}{8!5!}
$$

a) Simplify

$$
(x+2 y)^{6}
$$

b) Expand by binomial theorem and apply the expansion to evaluate (1.02) ${ }^{6}$ correct to five places of decimals
c) Express in polar form

$$
(5+2 j)(4-5 j)(2+3 j)
$$

d) Express in fractional forma and in the lowest form

Question Three

a) Money is invested and accrued interest at a compound interest 6.1% per half year. If shs 300,000 is invested in the account. Find:
(i) Total value of investment after 5 years
(ii) how many years before the investment exceeds kshs 1,600,000
b) The second, fifth and eleventh terms of an arithmetic progression are in geometric progression and the seventh term is 4 . Find the first term and common difference
c) If $\mathrm{a}=3+\mathrm{i}$ and $\mathrm{b}=4+2 \mathrm{i}$, find $3 \mathrm{~b}+4 \mathrm{a}-10 \mathrm{i}$

Question Four

a) Solve correct to 3 decimal places:

$$
3 x \times 3^{2 x-3}=12
$$

b) Simplify:

$$
\sqrt{27}-2 \sqrt{48}+5 \sqrt{75}+\sqrt{147}
$$

(i)

$$
7_{C_{3}} \div 9_{C_{5}}
$$

(ii)

$$
(2 x+3 y i)(3 x+2 y i)
$$

(iii)
c) If α and $\quad \beta x^{2}+b x+c=0$ verify that:

$$
\alpha+\beta=-b / a
$$

(i)

$$
\alpha \beta=c / a
$$

(ii)

Question Five

a) Find the expression $\cos 3 \theta$ in terms of $\cos ^{3} \theta$ and $\cos \theta$ (7 marks)
b) Expand:

$$
\cos ^{3} \theta
$$

$$
x^{5}-4 x^{3}+2 x+3
$$

c) Find the remainder when is divided by:
(i) $x-1$
(2 marks)
(ii) $\mathrm{x}+2$
(2 marks)

$$
\frac{\sqrt{2}}{\sqrt{7-\sqrt{2}}}+\frac{12}{\sqrt{7}+\sqrt{2}}=a \sqrt{7}+a \sqrt{2}
$$

d) If

