

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)

Faculty of Applied & Health Sciences

DEPARTMENT OF PURE AND APPLIED SCIENCES

DIPLOMA IN ANALYTICAL CHEMISTRY (DAC 10J)

ACH 2216: INORGANIC CHEMISTRY

END OF SEMESTER EXAMINATION

SERIES: DECEMBER 2011 TIME: 3 HOURS

Instructions to Candidates: You should have the following for this examination - Answer booklet This paper consists of TWO sections A & B Answer ALL questions in section A and THREE questions in section B. Each question in section A carries 4 marks while those in section B carry 20 marks each This paper consist of FOUR printed pages SECTION A (Answer all questions)

 $\ensuremath{\mathbb{C}}$ The Mombasa Polytechnic University College

1) Explain the trend in the first ionization energies of the elements given below

Carbon	1090KJ/mol	
Silicon	786KJ/mol	
Germanium	762KJ/mol	(4 marks)

- 2) Consider the elements chromium; manganese and iron with atomic number 24, 25 and 26 respectively.
 - (a) Write the electronic configuration of the $Cu^{2+}Mn^{2+}$ and Fe^{3+} ions (3 marks)
 - (b) Explain the stability of Cr^{2+} , Mn^{2+} and Fe^{3+} ions (1 mark)
- 3) Determine the oxidation number of the following elements in the compounds below.

a) $KM_nO_4(Mn)$	
b) $K_2Cr_2O_7Cr$)	
c) $CO_2(C)$	
d) $H_2SO_4(S)$	(4 marks)

4) (a) Define the term Lewis acids (2 marks)
(b) Explain why orthoboric acid (H₃BO₃) acts as a Lewis acid (2 marks)

5) The table below shows first ionization energies for some elements in period Two.

Element	N	0	F	Ne
Ionization Energy(KJ/mol)	1400	1310	1680	2080

- a) Explain why the value for oxygen is lower than that of Nitrogen (2 marks)
- b) Explain why Neon has the highest value for the first ionization energy (2 marks)
- 6) (a) The atomic number of elements X and Y are 38 and 51 respectively. Write the electronic configuration of X and Y (2 marks)
 - (b) State with reason(s) the element in (a) above that has a higher value of the first of ionization energy (2 marks)
- 7) Explain the Trivalency and Monovalency of group III elements (4 marks)
- 8) (a) Define Catenation (1 mark)
 (b) Give reasons why catenated compounds of Si-Si do not exist unlike those of carbon (3 marks)
- 9) Calcium Flouride and Calcium Chloride are typical ionic compounds. Explain why calcium Flouride has a melting point of 14 23°C. While calcium chloride has a melting point of 722°C

(4 marks)

10) (a) Define the term electron affinity(1 mark)(b) Study the table below to answer the questions that follow(1 mark)

	E	lement	Li	В	С	N	0	F	Ne	
	Fi	irst Electron Affinity (KJ/mol)	-60	- 28	-122	7	-142	-328	29	
Explai	n the di	fference in the values for Carbon a	and Ni	troge	n				(3	marks)
SECT	ION B	(60 MARKS)								
11) (a)	Name	ONE ore of Aluminium and give	its for	mula					(2	marks)
(b)	Alumi	nium is purified by the process of	electro	olysis.						
	(i) (ii) (iii)	Explain why Cryolite is added du Explain why Aluminum and oxyg Explain why the anode is replace	uring ti gen are ed froi	his pr e disc m tim	ocess harged a e to tim	t the e du	eir respe uring the	ctive el	(2 ectroo (3 s of e	marks) les marks) electrolysis
	(iv)	Give TWO alloys of Aluminium							(2)	marks)
(c)	Explai (i) (ii) (iii)	In the following observations: Aluminium Chloride is esse predominantly ionic Write a balanced equation for the Suggest a suitable PH value of th	entially e react e resu	y co ion of ltant a	valent ^f water a aqueous	whe and a solu	ereas a a dimer (ation in (luminu of Alun (3 m c) (ii) a	m fl (2 niniur arks) Ibove (2	uoride is marks) n Chloride marks)
(d)	Give 7	FWO uses of Aluminium							(2	marks)
12)(a)	Define	e the term REDOX reaction							(2	marks)
(b)	Deterr compo (i) (ii)	nine the oxidation number of punds/ions Cl in ClO_4^- S in SO_4^{2-}	the e	lemer	t in br	acke	ets in e	each of	f the	following
	(iii)	S in Na ₂ S ₄ O ₆							(3	marks)
(c)	Consi	der the following redox reaction								
		$3N_2H_4 + 2 BrO_3^- \longrightarrow 8N_2 + 2B_r^-$	+ 6H ₂	0						
	State v	with reason(s) the:							(5	

(i)	Oxidizing agent	(2 marks)
(ii)	Reducing agent	(2 marks)

(a) while the und of a well habered diagram, describe the extraction of phospholods (7 marks)

(e) Give the formula of a compound in which the oxidation state of sulfur is:

	(i)	-2	
	(11)	+2	
	(iii) (iv)	+4 +6	(4 marks)
13)	(a) Dra	w a well labeled diagram of the Nitrogen cycle	(7 marks)
	(b) Ou	tline Nitrogen fixation by lightning	(3 marks)
	(c) Ex	xplain any \mathbf{FOUR} features of Nitrogen that distinguish it from the rest of grou	1p V B. (6 marks)
	(d) Giv	ve reasons for the following:	(0 marks)
	(i) (ii)	Diamond is very hard while Graphite is soft Graphite is a conductor while Diamond is a non-conductor	(2 marks) (2 marks)
14)	(a) Brie	fly explain the following behavior.	
	(i) C (ii) A (iii) N	CO2 has low Mpt and Bpt while Si O ₂ is a high boiling point solid Al F ₃ is ionic while Al Br ₃ is covalent Va Cl dissolved in water forms a neutral solution (PH = 7) while Al ₂ Cl ₆ diss forms acidic solution (PH = 3)	(3 marks) (2 marks) olved in water (3 marks)
	(iv) E	$3F_3$ is non-polar while NF_3 is polar	(2 marks)

(b) The shapes of covalent molecules are mainly determined by the number of electron pains.

(i)	Which are the three possible ways of interaction between the electron pair	ıs (3 marks)
(ii)	Draw the shapes of the following molecules or ions and indicate the posi-	tion of the lone
	pairs of electrons	
	H ₂ O	
	$\mathrm{NH_4}^+$	
	SO_{3}^{2}	
	SO ₂	(7 marks)

15) Outline the distinguishing features between covalent and ionic compounds (20marks)