

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 CERTIFICATE IN ELECTRICAL \& ELECTRONIC ENGINEERING CERTIFICATE IN ELECTRICAL POWER ENGINERING (CEEE/CEPE II)

AMA 1102: ENGINEERING MATHEMATICS II

SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: OCTOBER 2013
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions

Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages

SECTION A (COMPULSORY)

Question One

$$
i=20 \sin (100 \pi+0.2)
$$

a) An alternating current amperes at any time t seconds is given by the angle being is radians. Find:
(i) The value of i when $\mathrm{t}=0$ and when $\mathrm{t}=10 \mathrm{~ms}$
(ii) One value of at which $\mathrm{i}=0$ and one at which $\mathrm{i}=20 \mathrm{~A}$
(11 marks)

$$
\frac{x^{2}+3 x-10}{x^{2}-2 x-3}
$$

b) Express
in partial fractions
(6 marks)

$$
\frac{d y}{d x} \quad \frac{d y}{d x}
$$

c) Determine in each of the following cases and find the value of at the rated value of x :

$$
y=6 x^{3}-7 x^{2}+4 x+5 \quad(x=3)
$$

(i)

$$
\begin{equation*}
y=3 x^{4}-7 x^{3}+4 x^{2}+3 x-4 \tag{2marks}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
(x=2) \tag{2marks}
\end{equation*}
$$

$$
\begin{equation*}
y=\tan (4 x+1) \quad \frac{d y}{d x} \tag{4marks}
\end{equation*}
$$

d) (i) If find
(ii) The power absorbed by a certain resister for various values of current is as follows:

Power (watts)	5	20	45	80	125	180
Current (amperes)	1	2	3	4	5	6

Plot the graph of power against the square of the current and hence determine the equation relating power and current for this resister.
(5 marks)

SECTION B (Answer any TWO questions from this section)

Question Two

a) A survey of the number of vehicles passing Technical University of Mombasa in one hour was carried out by DEPE 2. The traffic was divided into six categories: bicycle, buses, private cars, vans and lorries, taxis and others. The results are shown below:

Bicycles 23
Buses 15
Private cars 156

Vans and Lorries 94
Taxis 12
Others $\underline{6}$ 306
Draw the following types of diagram to illustrate the information:
(i) Bar chart
(ii) Pie chart
(iii) Pictogram
(iv) Frequency polygon
(12 marks)
b) Given the equation

$$
x^{2}+y^{3}=1
$$

(i) Transpose the equation to make y the subject of the transposed equation
(1 mark)
(ii) Construct ordered pairs of numbers corresponding to the integer values of x where
(iii) Plot the ordered pairs of numbers on a Cartesian graph and join the points plotted with a continuous curve
(2 marks)

Question Three

a) (i) Verify the following:

$$
\begin{equation*}
1-\frac{\sin \theta \tan \theta}{1+\sec \theta}=\cos \theta \tag{4marks}
\end{equation*}
$$

(ii) An automatic garden water spray gives out a spray to a distance of 2 m and revolves through an α
angle which can be varied. If the described spray catchment area is to be $3 \mathrm{~m}^{2}$, to what should α
angle be set (correct to the nearest degrees?
(3 marks)
b) (I) Evaluate the following showing the working:

(i)	$\sec 49^{\circ}$	(2 marks)
(ii)	$\operatorname{cosec} 17.92^{\circ}$	
(iii)	$\cot 83^{\circ} 16^{\prime}$	(2 marks)

(II) In a triangle ABC figure $1 \mathrm{~A}=53^{\circ}, \mathrm{B}=61^{\circ}$ and the length $\mathrm{a}=12.60 \mathrm{~cm}$. Find the unknown sides and angle:

$$
\tan \theta=1 \quad \sec ^{2} \theta
$$

(III) If find the value of without using tables (show your working) (3 marks)

Question Four

a) (I) Differentiate with respect to x :

$$
e^{3 x} \sin 4 x
$$

(i)

$$
\begin{equation*}
\frac{\sin 2 x}{2 x+5} \tag{3marks}
\end{equation*}
$$

(ii)
(II) If $x^{2}+y^{2}-2 x-6 y+5=0$ find and $\frac{d y}{d x}$ at $\frac{d^{2} y}{d x^{2}} \quad x=3, y=2$ (6 marks)
b) Obtain the differential coefficient of:

$$
y=3 / 5 x^{3}-\frac{2}{x^{2}}+5 \sqrt{x^{7}}+5
$$

(i)

$$
y=\ln (3-4 \cos x)
$$

(ii)

Question Five

a) (I) Express in partial fractions:

$$
\frac{32 x^{2}-28 x-5}{(4 x-3)^{3}}
$$

(i)

$$
\frac{9 x^{2}+48 x+18}{(2 x+1)\left(x^{2}+8 x+3\right)}
$$

(ii)
(II) (i) If A, B and C are the angles of a triangle deduce that

$$
\frac{\sin A+\sin B}{\cos A+\cos B}=\cot \frac{c}{2}
$$

$\sin A+\sin B+\sin C=4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}$
(ii)
b) Find the length of arc or a circle of radius 5 cm when the angle subtended at the centre is 1.6 radians

