THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE
(A Constituent College of JKUAT)
(A Centre of Excellence) Faculty of Applied \& Health Sciences

DEPARTMENT OF MEDICAL SCIENCES
DIPLOMA IN PHARMACEUTICAL TECHNOLOLOGY
(DPT 12M)

ACH 2114: PHYSICAL CHEMISTRY
END OF SEMESTER EXAMINATION
SERIES: AUGUST 2012
TIME: 2 HOURS

[^0]You should have the following for this examination

- Answer Booklet

Attempt ALL questions in section A by choosing the correct answer
Attempt ALL question on section B and any TWO question on section C
This paper consists of EIGHT printed pages
SECTION A (COMPULSORY)

1. Which of the following statement is not consistent:
b) Gas molecules are a apart
c) Gas molecules have K.E
d) Total translation energies is independent of collision
e) Diffusion is movement of gas molecules
2. Identify nature and sign of Enthalpy for reaction

$$
\mathrm{H}_{3} \mathrm{PO}_{4}+3 \mathrm{LiOH} \rightarrow \mathrm{Li}_{3} \mathrm{PO}_{4}+3 \mathrm{H}_{2} \mathrm{O}+\text { Energy }
$$

a) Endothermic, Negative
b) Endothermic, Positive
c) Exothermic, Negative
d) Exothermic, Positive
3. Calculate quantity of heat required to flow into 1.5 g of water to change temperature of water by $53^{\circ} \mathrm{C}$ (Specific heat of water $=4.184 \mathrm{Ug} .{ }^{\circ} \mathrm{C}$)
a) 326
b) 327
c) 326.8
d) 330
Δ
4. One mole of $\mathrm{CH}_{3} \mathrm{COONa}$ dissolves to release -17.3kg of heat. Calculate H_{s} for 3 moles.
a) 17.3
b) -34.6 k
c) -51.9
d) None of above
5. Give an equilibrium constant expression for $\mathrm{A}_{(\mathrm{s})} \rightleftharpoons 2 \mathrm{C}_{(\mathrm{g})}+\mathrm{B}_{(\mathrm{g})}+\mathrm{D}_{(\mathrm{g})}$
a) $\mathrm{K}_{\mathrm{C}}=[\mathrm{D}][\mathrm{C}][\mathrm{B}]$
b) $\mathrm{K}_{\mathrm{C}}=[\mathrm{C}][\mathrm{B}][\mathrm{D}] /[\mathrm{A}]$
c) $\mathrm{K}_{\mathrm{C}}=[\mathrm{C}]^{2}[\mathrm{~B}][\mathrm{D}]$
d) $\mathrm{K}_{\mathrm{C}}=[\mathrm{C}]^{2}[\mathrm{~B}][\mathrm{D}] /[\mathrm{A}]$

Use the following value of Equilibrium constant to answer question 6, 7, 8 and 9

a) $\mathrm{K}_{\mathrm{C}}=1 \times 10^{2}$
b) $\mathrm{K}_{\mathrm{C}}=1 \times 10^{-8}$
c) $K_{C}=1 \times 10^{8}$
d) $K_{C}=1$
6. Which value of KC indicates that reaction is towards completion?
7. Which value of KC indicates that reaction is at Equilibrium balance?
8. Which value of KC indicates that reaction is far from completion?
9. Which value of KC indicates that reaction proceeds to a small extent?
10. For reaction $2 \mathrm{NH}_{3} \rightleftharpoons 3 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{N}_{2(\mathrm{~g})} \mathrm{AH}=-90 \mathrm{kj}$ the number of moles of H_{2} can be decreased by:
a) Increasing container size
b) Adding NH_{3}
c) Increasing Temperature
d) Removing N_{2}
11. Which factor will not affect the value of equilibrium constant K_{C} ?
a) Volume
b) Pressure
c) Catalyst
d) Temperature
12. Which pair of variables are inversely proportional to each other?
a) P, T
b) P, V
c) V, T
d) P, n
13. If solute present is less than maximum amount, solution is said to be:
a) Saturated
b) Supersaturated
c) Unsaturated
d) Concentrated
14. In a solution equilibrium.
a) No dissolution occurs
b) Rate of dissolution is less than rate of crystallization
c) Rate of dissolution greater than rate of crystallization
d) None of the above
15. The solubility of solute depends on:
a) Nature of solute only
b) Temperature of solvent
c) Nature of solute and temperature
d) Nature of solvent and temperature
16. Viscosity is proportional to:
a) Temperature
b) Molecular weight
c) Pressure
d) Nature of molecules
17. Which of the following is not an empherical gas law?
a) Charles
b) Boyles
c) Dalton
d) Avogadro’s
18. What is the sign of Enthalpy of formation?
a) DH
${ }_{f}^{0}$
b) DH
c) DF
Δ
d) H_{f}
19. Which unit of composition varies with temperature?
a) Molality
b) Molarity
c) Mole fraction
d) Mass percent
20. Calculate molarity of a solution that contains 0.20 mol of KCI in 7.98 L solution
a) 0.0132
b) 0.0253
c) 0.459
d) 1.363
21. Colligative properties depends on:
a) Identify of solute molecules
b) Concentration of solute
c) Nature of solute
d) Physical properties
22. Which of the following is NOT a colligative properties.
a) Elevation of Boiling Point
b) Depression of Boiling Point
c) Depression of Freezing Point
d) Osmotic Pressure
23. Gases have:
a) Maximum intermolecular space
b) Maximum intermolecular attraction
c) High compressibility factor
d) Maximum Repulsion
24. Choose basic salt from the following:
a) NaCl
b) $\mathrm{Na}_{2} \mathrm{Co}_{3}$
c) NaHSO_{4}
d) NaNO_{3}
25. Which of the following is a double salt?
a) $\mathrm{K} \mathrm{CaPO}_{4}$
b) NaCl
c) NaSO_{4}
26. Non-colligative properties depends on:
a) Nature of solute
b) Amount of solute
c) Nature of solvent
d) Amount of solvent
27. Which of the following in NOT a theory of osmosis
a) Sieve theory
b) Solution
c) Elevation of vapour pressure
d) Vapour pressure theory
28. Which law relates pressure and volume
a) Charles
b) Boyles
c) Dalton
d) Avogadro's
29. Which pair of variable are directly proportional to one another in ideal gas equation
a) P, T
b) P,V
c) n, T
d) R, n
30. If solute is present in small size less than one nanometer the mixture will be called.
a) Solution
b) Suspension
c) Emulsion
d) Mixture
31. Which is not a characteristic of chemical equilibrium:
a) Rate of forward equal rate of reverse
b) Concentration of Reactant and products are constant with time
c) Pressure of both reactant and products are equal
d) Reaction moves to forward and reserve at the same rate
32. Consider reaction $3 \mathrm{~A}_{(\mathrm{s})}+\mathrm{B}_{(\mathrm{s})} \rightleftharpoons 2 \mathrm{C}$ if 2 mol of $\mathrm{A}, 3.0$ mols of B and 2.0 moles of C were present in 1 L vesses. Calculate the value of KC .
a) 8.0
b) 1.0
c) 2.0
d) 0.50
33. For chemical reactions $\mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{PCl}_{(\mathrm{g})} \mathrm{AH}=-92.6 \mathrm{~kg}$ which conditions favours maximum conversion to products.
a) High pressure and high temperature
b) High pressure and low temperature
c) Low pressure and low temperature
d) Low pressure and low temperature
e) Low pressure and high pressure
34. 25 grams of Napthelene was mixed with 75 grams of Benzane. Calculate mass percent of Benzane.
a) 35
b) 36
c) 25
d) 75
35. Calculate molality of a solution that contains 6.1 mols of KNO3 and 745grams of water.
a) 0.315
b) 1.02
c) 0.779
d) 1.14
36. The pressures of gas will \qquad when volume is decreased.
a) Increases
b) Decreases
c) Do not change
d) Non of above
37. If both volume and pressure are double what would happen to temperature.
a) Double
b) Reduce by half
c) Decreases
d) Increases
38. If a solute exist in equilibrium with the solvent, the solution is defined as:
a) Saturated
b) Unsaturated
c) Dilute
d) Concentrated
39. The weakest antiparticle attraction exist between particles of
a) Liquid
b) Gas-liquid
c) Gas-gas
d) Solid-solid
40. Boyles Law requires that:
I. $\quad \mathrm{P} 1 \mathrm{~V} 1=\mathrm{P}_{2} \mathrm{P}_{2}$
II. $\mathrm{PV}=$ Constant
III. $\quad \mathrm{P} 1 / \mathrm{P} 1=\mathrm{V}_{2} / \mathrm{V}_{1}$
a) I only
b) II and I
c) III only
d) II and III

SECTION B (ATTEMPT ALL QUESTIONS - 40 MARKS)

41. 10 g of Nitrogen gas and 10 g of Neon were mixed in 15 L contained at $25^{\circ} \mathrm{C}$. Calculate total pressure of mixture and partial pressure of Nitrogen gas.
(4 marks)
42. With the aid of equations state:
a) Charles Law
b) Boyles Law
(4 marks)
43. Define:
a) Partial pressure of a gas
b) Vapour pressure of a liquid
44. A solution was prepared by dissolving 35.0 gramms of Haemoglobin (Hb) in water and making solution up to one litre. If osmotic pressure of solution at $25^{\circ} \mathrm{C}$ was 10 mmHg , calculate molar mass of Haemoglobin LR $=0.0821$ L.atm/Kelvin mol
(4 marks)
45. 0.55 grams of Nitrobenzene in 22grams of ethanoic acid depressed the freezing point of the latter by $078^{\circ} \mathrm{C}$. Calculate R.M.M of Nitrobenzene given cryoscopic constant as $3.90^{\circ} \mathrm{Cm}^{-1}$
(4 marks)
46. Differentiate between:
a) Isotonic and hypotonic solution
b) Reverse osmosis and osmosis
47. State the postulates made in kinetic theory of gases.
48. Calculate molar gas constant R at S.T.P for one mole of a gas given pressure as 760 mmHg .
49. Calculate heat of combustion of liquid Benzene per mole given enthalpy of formation of $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{C}_{6} \mathrm{H}_{6}$ as -393.55 , -285.85 and -49.04 Kibjoules respectively.
50. (a) State equilibrium Law
(2 marks)
(b) Explain why gases deviate at high pressure.

SECTION C (ATTEMPT ANY TWO QUESTIONS)

51. (a) 0.6 grams of Vinyl Methyl ether $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ was dissolved in 460 grams of water and volume of solution was made to 120ML. Calculate:
i) Molarity of solution
ii) Molality of solution
iii) Mole fraction of Methyl ether
iv) Boiling point of solution given ebuliscopic constant of water as $0.52^{\circ} \mathrm{C} \mathrm{kg} / \mathrm{m}$
v) Vapour pressure of solution given vapour pressure of water as 23.48 mmHg
(10 marks)
(b) Define the following terms:
i) Boiling point
ii) Osmotic pressure
iii) Enthalpy of combustion
iv) Hydration energy
(c) State Lechateliers Principle.
52. (a) With help of a diagram, explain the working of Berkely Hertley Apparatus.
(b) State (i) Characteristic of Reversible Reaction
(ii) Characteristic of Dynamic Equilibrium
(c) Explain briefly theories of semi-permeable membrane.
53. (a) Define the following terms:
i) Order of reaction
ii) Molecularity
iii) Rate Constant
(b) State:
i) Rate Law
ii) Ohmic Law
iii) Characteristic of First Order Reaction.
(c) Derive first order rate equation and use it to calculate concentration of a reaction after 30 minutes if the initial concentration was 0.02 m with rate constant of $1.8 \times 102 \mathrm{~min}^{-1}$
(8 marks)

[^0]: Instructions to Candidates:

