

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)

(A Centre of Excellence) Faculty of Applied & Health

Sciences

DEPARTMENT OF MEDICAL SCIENCES

DIPLOMA IN PHARMACEUTICAL TECHNOLOLOGY (DPT 12M)

ACH 2114: PHYSICAL CHEMISTRY

END OF SEMESTER EXAMINATION SERIES: AUGUST 2012 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination - Answer Booklet Attempt ALL questions in section A by choosing the correct answer Attempt ALL question on section B and any TWO question on section C This paper consists of EIGHT printed pages <u>SECTION A (COMPULSORY)</u>

- **1.** Which of the following statement is not consistent:
 - **b)** Gas molecules are a apart
 - c) Gas molecules have K.E
 - **d)** Total translation energies is independent of collision
 - e) Diffusion is movement of gas molecules
- **2.** Identify nature and sign of Enthalpy for reaction $H_3PO_4 + 3LiOH \rightarrow Li_3PO_4 + 3H_2O + Energy$
 - a) Endothermic, Negative
 - b) Endothermic, Positive
 - c) Exothermic, Negative
 - d) Exothermic, Positive
- **3.** Calculate quantity of heat required to flow into 1.5g of water to change temperature of water by 53°C (Specific heat of water = 4.184Ug.°C)
 - **a)** 326
 - **b)** 327
 - **c)** 326.8
 - **d)** 330
- **4.** One mole of CH₃COONa dissolves to release -17.3kg of heat. Calculate H_s for 3 moles.
 - a) 17.3
 - b) -34.6k
 - c) -51.9d) None of above
- 5. Give an equilibrium constant expression for $A_{\mbox{\tiny (s)}}$
- $\rightleftharpoons 2C_{(g)} + B_{(g)} + D_{(g)}$

- **a)** $K_{C} = [D] [C] [B]$
- **b)** $K_{C} = [C] [B] [D]/[A]$
- c) $K_C = [C]^2 [B] [D]$
- **d)** $K_C = [C]^2 [B] [D]/[A]$

<u>Use the following value of Equilibrium constant to answer question 6, 7, 8 and 9</u>

- a) $K_C = 1 \times 10^2$
- b) $K_{\rm C} = 1 \times 10^{-8}$
- c) $K_{\rm C} = 1 \ {\rm X} \ 10^8$
- d) $K_{\rm C} = 1$

6. Which value of KC indicates that reaction is towards completion?

- 7. Which value of KC indicates that reaction is at Equilibrium balance?
- **8.** Which value of KC indicates that reaction is far from completion?
- **9.** Which value of KC indicates that reaction proceeds to a small extent?

10. For reaction $2NH_3 \stackrel{\rightleftharpoons}{=} 3H_{2(g)} + N_{2(g)}AH = -90kj$ the number of moles of H_2 can be decreased by:

- **a)** Increasing container size
- **b)** Adding NH₃
- c) Increasing Temperature
- d) Removing N₂

11. Which factor will not affect the value of equilibrium constant K_C ?

- a) Volume
- b) Pressure
- c) Catalyst
- d) Temperature

12. Which pair of variables are inversely proportional to each other?

- a) P, T
- b) P, V
- c) V, T
- d) P, n

13. If solute present is less than maximum amount, solution is said to be:

- a) Saturated
- b) Supersaturated
- c) Unsaturated
- d) Concentrated
- 14. In a solution equilibrium.
 - a) No dissolution occurs
 - b) Rate of dissolution is less than rate of crystallization
 - c) Rate of dissolution greater than rate of crystallization
 - d) None of the above
- 15. The solubility of solute depends on:
 - a) Nature of solute only
 - b) Temperature of solvent
 - c) Nature of solute and temperature
 - d) Nature of solvent and temperature
- 16. Viscosity is proportional to:
 - a) Temperature
 - b) Molecular weight
 - c) Pressure
 - d) Nature of molecules

17. Which of the following is not an empherical gas law?

- a) Charles
- b) Boyles
- c) Dalton
- d) Avogadro's
- 18. What is the sign of Enthalpy of formation?
 - a) DH \int_{f}^{+}
 - b) DH
 - c) DF

 - d) H_f

19. Which unit of composition varies with temperature?

- a) Molality
- b) Molarity
- c) Mole fraction
- d) Mass percent

20. Calculate molarity of a solution that contains 0.20 mol of KCI in 7.98L solution

- a) 0.0132
- b) 0.0253
- c) 0.459
- d) 1.363
- 21. Colligative properties depends on:
 - a) Identify of solute molecules
 - b) Concentration of solute
 - c) Nature of solute
 - d) Physical properties
- 22. Which of the following is NOT a colligative properties.
 - a) Elevation of Boiling Point
 - b) Depression of Boiling Point
 - c) Depression of Freezing Point
 - d) Osmotic Pressure
- 23. Gases have:
 - a) Maximum intermolecular space
 - b) Maximum intermolecular attraction
 - c) High compressibility factor
 - d) Maximum Repulsion
- **24.** Choose basic salt from the following:
 - a) NaCl

- b) Na₂Co₃
- c) NaHSO₄
- d) NaNO₃
- 25. Which of the following is a double salt?
 - a) K CaPO₄
 - b) NaCl
 - c) NaSO₄
- 26. Non-colligative properties depends on:
 - a) Nature of solute
 - b) Amount of solute
 - c) Nature of solvent
 - d) Amount of solvent
- 27. Which of the following in NOT a theory of osmosis
 - a) Sieve theory
 - b) Solution
 - c) Elevation of vapour pressure
 - d) Vapour pressure theory
- 28. Which law relates pressure and volume
 - a) Charles
 - b) Boyles
 - c) Dalton
 - d) Avogadro's
- 29. Which pair of variable are directly proportional to one another in ideal gas equation
 - a) P,T
 - b) P,V
 - c) n,T
 - d) R,n
- 30. If solute is present in small size less than one nanometer the mixture will be called.
 - a) Solution
 - b) Suspension
 - c) Emulsion
 - d) Mixture
- 31. Which is not a characteristic of chemical equilibrium:
 - a) Rate of forward equal rate of reverse
 - b) Concentration of Reactant and products are constant with time
 - c) Pressure of both reactant and products are equal
 - d) Reaction moves to forward and reserve at the same rate
- 32. Consider reaction $3A_{(s)} + B_{(s)} \rightleftharpoons 2C$ if 2 mol of A, 3.0 mols of B and 2.0 moles of C were present
 - in 1 L vesses. Calculate the value of KC.

- a) 8.0
- b) 1.0
- c) 2.0
- d) 0.50

33. For chemical reactions $PCl_{3(g)} + Cl_{2(g)} \rightleftharpoons PCl_{3(g)} AH = -92.6 kg which conditions favours maximum$

conversion to products.

- a) High pressure and high temperature
- b) High pressure and low temperature
- c) Low pressure and low temperature
- d) Low pressure and low temperature
- e) Low pressure and high pressure

34. 25 grams of Napthelene was mixed with 75 grams of Benzane. Calculate mass percent of Benzane.

- a) 35
- b) 36
- c) 25
- d) 75

35. Calculate molality of a solution that contains 6.1 mols of KNO3 and 745 grams of water.

- a) 0.315
- b) 1.02
- c) 0.779
- d) 1.14

36. The pressures of gas will _______ when volume is decreased.

- a) Increases
- b) Decreases
- c) Do not change
- d) Non of above

37. If both volume and pressure are double what would happen to temperature.

- a) Double
- b) Reduce by half
- c) Decreases
- d) Increases

38. If a solute exist in equilibrium with the solvent, the solution is defined as:

- a) Saturated
- b) Unsaturated
- c) Dilute
- d) Concentrated

39. The weakest antiparticle attraction exist between particles of

- a) Liquid
- b) Gas-liquid
- c) Gas-gas
- d) Solid-solid

- 40. Boyles Law requires that:
 - I. $P1 V1 = P_2P_2$
 - II. PV = Constant
 - III. $P1/P1 = V_2/V_1$
 - a) I only
 - b) II and I
 - c) III only
 - d) II and III

SECTION B (ATTEMPT ALL QUESTIONS – 40 MARKS)

- 41. 10g of Nitrogen gas and 10g of Neon were mixed in 15L contained at 25°C. Calculate total pressure of mixture and partial pressure of Nitrogen gas. (4 marks)
- 42. With the aid of equations state:
 - a) Charles Law
 - b) Boyles Law
- 43. Define:
 - a) Partial pressure of a gas
 - **b)** Vapour pressure of a liquid
- 44. A solution was prepared by dissolving 35.0gramms of Haemoglobin (Hb) in water and making solution up to one litre. If osmotic pressure of solution at 25°C was 10mmHg, calculate molar mass of Haemoglobin LR = 0.0821 L.atm/Kelvin mol (4 marks)
- 45. 0.55grams of Nitrobenzene in 22grams of ethanoic acid depressed the freezing point of the latter by 078°C. Calculate R.M.M of Nitrobenzene given cryoscopic constant as 3.90°Cm⁻¹ (4 marks)

46. Differentiate between:

- a) Isotonic and hypotonic solution
- **b)** Reverse osmosis and osmosis
- 47. State the postulates made in kinetic theory of gases. (4 marks)
- 48. Calculate molar gas constant R at S.T.P for one mole of a gas given pressure as 760mmHg.

(4 marks)

(4 marks)

(4 marks)

. _

(4 marks)

49.	Cal and	culate heat of combustion of liquid Benzene per mole given enthalpy of format C_6H_6 as -393.55, - 285.85 and -49.04 Kibjoules respectively.	ion of CO ₂ , H ₂ O (4 marks)
50.	(a) (b)	State equilibrium Law Explain why gases deviate at high pressure.	(2 marks) (2 marks)
<u>SE</u>	CT]	ION C (ATTEMPT ANY TWO QUESTIONS)	
51.	(a)	 0.6 grams of Vinyl Methyl ether C₃H₆O was dissolved in 460 grams of water and v solution was made to 120ML. Calculate: i) Molarity of solution ii) Molality of solution iii) Mole fraction of Methyl ether iv) Bailing point of solution given abulicagois constant of water as 0.52%C kg/m 	volume of
	(b)	 v) Boiling point of solution given ebunscopic constant of water as 0.52°C kg/m v) Vapour pressure of solution given vapour pressure of water as 23.48mmHg Define the following terms: i) Boiling point ii) Osmotic pressure iii) Enthalpy of combustion iv) Hydration energy 	(10 marks) (8 marks)
	(c)	State Lechateliers Principle.	(2 marks)
52.	(a)	With help of a diagram, explain the working of Berkely Hertley Apparatus.	(6 marks)
	(b)	State (i) Characteristic of Reversible Reaction (ii) Characteristic of Dynamic Equilibrium	(5 marks)
-0	(c)	Explain briefly theories of semi-permeable membrane.	(9 marks)
53.	(a)	i) Order of reactionii) Molecularityiii) Rate Constant	(6 marks)
	(b)	 State: i) Rate Law ii) Ohmic Law iii) Characteristic of First Order Reaction. 	(6 marks)
	(a)	Derive first order rate equation and use it to calculate concentration of a reaction :	ofter 20 minutes

(c) Derive first order rate equation and use it to calculate concentration of a reaction after 30 minutes if the initial concentration was 0.02m with rate constant of 1.8 x 102 min⁻¹ (8 marks)