

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering & Technology

DEPARTMENT OF BUILDING & CIVIL ENGINEERING DIPLOMA IN BUILDING & CIVIL ENGINEERING (DBCE 13J)

EBC 2207: THEORY OF STRUCTURES II

END OF SEMESTER EXAMINATION SERIES: APRIL 2014 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

- You should have the following for this examination
 - Answer booklet
 - Scientific Calculator
 - Mathematical Tables

This paper consists of FIVE questions. Answer any THREE questions of the FIVE questions

All questions carry equal marks Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

Question One

- a) State the first and second Mohr's theorems and give their mathematical expressions. (4 marks)
- **b)** Figure 1 show a simple beam supported at points A and B and acted on b two moving loads 1.0 apart.
 - (i) Sketch the influence lines diagrams for R_A, R_B, shear force and bending moment at point E on the beam.
 - (ii) Determine the maximum shear force and bending moments at point E of the beam.

(16 marks)

R_B

Question Two

- a) A simply supported beam whose, cross section is shown in figure 2 is subjected to a maximum bending moment of 52.9KNm. Taking E = 205KN/mm2; determine:
 - (i) The radius of curvature
 - (ii) The maximum tensile and compressive stresses

(10 marks)

Figure 2

- **b)** If the permissible stresses in compression and tension for the cross-section in figure 2 above were 45.5N/mm² and 25.5N/mm² respectively, calculate:
 - (i) The safe bending moment for the section
 - (ii) The safe uniform load which the beam can carry on a span of 6.8m if one end is free and the other fixed. (10 marks)

Question Three

a) For the beam shown in figure 3(a), sketch the influence lines for reactions 'A' and 'B'.

b) If a train of loads as shown in figure (3b) is at the position indicated relative to beam in figure (3a), determine the magnitudes of the reaction 'R_A' and 'R_B'
(20 marks)

2m

Question Four

- **a)** For the beam shown in figure 4, sketch the influence lines diagrams for:
 - (i) The reaction at A
 - (ii) The reaction at B
 - (iii) The bending moment at E

(6 marks)

b) Determine the maximum bending moment at point E in (4a) when a uniformly distributed load of 70KN/m and 6m long crosses the beam from C to D (14 marks)

2m

Question Five

The load system shown in figure 5 crosses abeam simply supported over a span 24m.

Figure 5

Determine the maximum bending moment under 25KN load

(20 marks)