

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering \& Technology

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING DIPLOMA IN BUILDING \& CIVIL ENGINEERING (DBCE 13J)

EBC 2207: THEORY OF STRUCTURES II

END OF SEMESTER EXAMINATION
SERIES: APRIL 2014
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet
- Scientific Calculator
- Mathematical Tables

This paper consists of FIVE questions. Answer any THREE questions of the FIVE questions

All questions carry equal marks
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One

a) State the first and second Mohr's theorems and give their mathematical expressions. (4 marks)
b) Figure 1 show a simple beam supported at points A and B and acted on b two moving loads 1.0 apart.
(i) Sketch the influence lines diagrams for $\mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}$, shear force and bending moment at point E on the beam.
(ii) Determine the maximum shear force and bending moments at point E of the beam.
(16 marks)

$$
\mathrm{R}_{\mathrm{B}}
$$

Question Two

a) A simply supported beam whose, cross section is shown in figure 2 is subjected to a maximum bending moment of 52.9 KNm . Taking $\mathrm{E}=205 \mathrm{KN} / \mathrm{mm} 2$; determine:
(i) The radius of curvature
(ii) The maximum tensile and compressive stresses
(10 marks)
Figure 2
b) If the permissible stresses in compression and tension for the cross-section in figure 2 above were $45.5 \mathrm{~N} / \mathrm{mm}^{2}$ and $25.5 \mathrm{~N} / \mathrm{mm}^{2}$ respectively, calculate:
(i) The safe bending moment for the section
(ii) The safe uniform load which the beam can carry on a span of 6.8 m if one end is free and the other fixed.
(10 marks)

Question Three

a) For the beam shown in figure $3(a)$, sketch the influence lines for reactions ' A ' and ' B '.
b) If a train of loads as shown in figure (3b) is at the position indicated relative to beam in figure (3a), determine the magnitudes of the reaction ' R_{A} ' and ' R_{B} '
(20 marks)

2m

Question Four

a) For the beam shown in figure 4, sketch the influence lines diagrams for:
(i) The reaction at A
(ii) The reaction at B
(iii) The bending moment at E
b) Determine the maximum bending moment at point E in (4a) when a uniformly distributed load of $70 \mathrm{KN} / \mathrm{m}$ and 6 m long crosses the beam from C to D

2m

Question Five

The load system shown in figure 5 crosses abeam simply supported over a span 24 m .

Figure 5

Determine the maximum bending moment under 25 KN load

