

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering &

Technology

DEPARTMENT OF BUILDING & CIVIL ENGINEERING

UNIVERSITY EXAMINATION FOR DECREE IN:

BACHELOR OF SCIENCE IN CIVIL ENGINEERING (BSCE)

ECE 2514: THEORY OF STRUCTURES VII

END OF SEMESTER EXAMINATION SERIES: APRIL 2015 TIME ALLOWED: 3 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

- Pocket Calculator This paper consists of **FIVE** questions. Answer questions **ONE** (Compulsory) and any other **TWO** questions Maximum marks for each part of a question are as shown Use neat, large and well labeled diagrams where required

This paper consists of **THREE** printed pages

Question One (Compulsory)

a) The rectangular beam shown in figure Q1(a) is made from a material having a yield stress in compression of 20N/mm² and in tension of 100N/mm². If it is to be used to carry a load of 40KN/m with a load factor of 2.0 on a span of 10m, what must be the value of the dimension d

(10 marks)

Figure Q1 (a)

- b) The working stress in mild steel is 150N/mm². If the yield stress is 230N/mm², calculate the load factor in the case of a joist having a shape factor of 1.15 (6 marks)
- c) From first principles, derive the expression used to determine the location of the positive yield line from a supported edge of a slab and the capacity of the collapse load using the method of segmental equilibrium. (14 marks)

Question Two

a) Find the collapse load factor for the portal frame shown in figure Q2 (a) (8 marks)

4m

b) One of the spans of a continuous one-way slab has been so reinforced that the ultimate moment capacities at the left end, right end and in the span are 1400, 1200 and 900kg m/m respectively. The centre to centre distance of support is 3m and slab is uniformly loaded. Locate the yield lien and compute the collapse load **(12 marks)**

Question Three

- **a)** Illustrate the yield are patterns in the following slabs:
 - (i) Simply supported square slab
 - (ii) Rectangular slab with fixed edges
 - (iii) Simply supported triangular slab
 - (iv)Rectangular slab simply supported
- b) State FOUR assumptions in plastic theory and design of structures (4 marks)
 c) Determine the shape factor for the I-section shown in figure Q3(c) (12 marks)

(4 marks)

b = 200mm

Question Four

a) Briefly explain the following theorems of plastic analysis of structures:

- (i) Kinematic theorem
- (ii) The lower bond theorem
- (iii) Uniqueness theorem
- b) Determine the collapse load factor for a propped cantilever beam loaded with a concentrated load P at its mid length as shown in figure Q4(b) (11 marks)

Figure 4 (b)

Question Five

- **a)** Outline FOUR assumptions of yield line analysis
- b) With aid of diagram, discuss THREE elementary mechanisms that can occur in plastic analysis of frames
 (9 marks)
- c) A simply supported beam of 7m span is subjected to a uniformly distributed load of 15KN/m. Calculate the elastic section modulus on plastic theory if the yield stress is 240N/mm². Take the load factor as 1.75 and shape factor as 1.15 (7 marks)

(4 marks)

(9 marks)