

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR DEGREE OF:

BACHELOR OF TECHNOLOGY IN RENEWABLE ENERGY BACHELOR OF TECHNOLOGY IN APPLIED PHYSICS

APS 4206: STRUCTURE & PROPERTIES OF MATTER

END OF SEMESTER EXAMINATION SERIES: APRIL 2015 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables

- Scientific Calculator

This paper consist of **FOUR** questions Answer question **ONE (COMPULSORY)** and any other **TWO** questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

You may use: $1eV = 1.602 \times 10^{-19}J$ Planks constant, h = 6.626 x $10^{-34}Js$ Acceleration due to gravity g = 9.8ms⁻² Avogadro's number N = 6.02 x 10^{23} g/mole Electron's charge e = 1.6 x $10^{-16}C$

$$\varepsilon_{o} = 8.85 \times 10^{-12} Fm^{-1}$$

Permittivity of free space, Bolt 2mann constant K = 1.38×10^{-23} Jk⁻¹

 $\dot{A} = 10^{-10} m$

 $\mu_{o} = 4\pi \times 10^{-7} Hm^{-1}$

Permeability of free space

$$E_q = 8 \times 10^{10} Nm^{-2}$$

Young's modulus of glass

$$_{g} = 0.314 J / m^{2}$$

Surface energy of glass

$$V_{g} = 0.25$$

Poisson's ratio of glass,

Question One (Compulsory)

a)	(i) What is the capacity of any sub sheet having an orbital quantum number, L?	(1 mark)	
L	(ii) Determine the maximum number of electrons for the orbital quantum number L =	3 (3 marks)	
D) C)	 List various types of bonds in materials giving an example of a material for ach bond (i) Draw the f_{cc} unit cell and; (ii) Calculate the packing factor 	(6 marks) (1 mark) (4 marks)	
d)	(i) Distinguish between long range order and short range order in solids	(2 marks)	
	(ii) Give TWO examples of short range order materials	(2 marks)	
e)	(i) What is a dislocation?(ii) Briefly describe TWO basic types of dislocations	(1 mark) (4 marks)	
f)	Describe TWO methods of hardening materials	(4 marks)	
g)	How significant are phase diagrams for alloys	(2 marks)	
Question Two			
a)	(i) What is coordination number of an atom?	(1 mark)	
	(ii) Calculate the basis of a unit all for: Simple cubic (sc) face centred cubic (f_{cc}) and body centred cubic (b_{cc}) $\frac{r^+}{r^-}$	(2 marks) (2 marks) (2 marks)	
b)	Determine the critical ratio of ionic radii for r^- which the bcc structure is just stable your working	, showing clearly (5 marks)	
c)	List all the <101> members	(5 marks)	
Question Three			
a)	Explain the difference between soft loading and hard loading	(2 marks)	

b) Distinguish between plastic and elastic behavior of materials	(2 marks)		
c) Describe how the charpy test is used to determine toughness of a metal	(4 marks)		
 d) Explain what you understand by the following terms: (i) Ductility (ii) Hardness (iii) Annealing of materials (iv)Flexure 	(8 marks)		
e) Describe TWO ways of strengthening glasses Question Four	(4 marks)		
 a) In connection with alloys define the following: (i) Interstitial solid solution (ii) Substitutional solid solution 	(1 mark) (1 mark)		
b) State the conditions necessary for the formation of each of the solid solutions in (a)	(4 marks)		
 c) With regard to eutectic mixtures: (i) Explain eutectic composition and; (ii) Describe the eutectic structure 	(2 marks) (2 marks)		
d) Refer to the tin-lead T-X diagram below:			
$\begin{array}{ccc} \alpha & \beta \\ \text{I. Define the phase and phase} \\ \text{II. What is the composition of:} \\ (i) Liquid phase and; \end{array}$	(1 mark) (1 mark)		
(ii) Solid phase at the temperature and composition	(1 mark) (1 mark)		
III. Describe all the phase transformations which take place when the solution of Y is cooled from above 327°C down to room temperature (about 20°C)	of the composition (4 marks)		
IV. State the lever's rule and use it to calculate the ratio of the amount of solid to	```		
V. Determine the maximum amount (in percentage) of tin which may be dis	```		

V. Determine the maximum amount (in percentage) of tin which may be dissolved in lead at 180°C and say what happens to the rest of tin (1 mark)