

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering & Technology

DEPARTMENT OF BUILDING & CIVIL ENGINEERING

UNIVERSITY EXAMINATION FOR: BACHELOR OF SCIENCE IN CIVIL ENGINEERING (BSCE13S – Y3 S2)

ECE 2311: SOIL MECHANICS

END OF SEMESTER EXAMINATION SERIES: APRIL 2014 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

Answer booklet

- Scientific Calculator This paper consists of **FIVE** questions. Answer question **ONE (COMPULSORY)** and any other **TWO** questions All questions carry equal marks Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

Question One (COMPULSORY)

a) Briefly discuss the assumptions considered when computing stresses at a point using Boussinesq's formula.
 (5 marks)

b) ABCD is a raft foundation of a multi-story building wherein AB = 20m and BC = 12m. The uniformly δ_z distributed load q over the raft is 1000KN/m². Determine at a depth of 6m below point O, wherein AA₁ = 4m and A₁O = 6m. Use chart II (6 marks)

n. Use chart II C

Figure 1

c) Using illustrations, outline the factors that can cause instability in a slope and lead to failure.

(6 marks)

(7 marks)

- **d)** Using Culman's method, determine the critical height of an embarkement having a slope angle of 400 $\phi' = 20^{\circ}$ and the constructed soil having C' = 630KN/m² and effective unit weight = 114kg/m³. Find $Fc = F\phi = 1.25$ the allowable height of the embarkment if **(6 marks)**
- e) Explain soil stabilization. Give three examples.

Question Two

a) Three parallel strip footings 3m wide and 5m apart centre to centre transmit pressure of 200, 150 and 100KNm² respectively. Calculate the vertical stress due to the combined loads beneath the centres of each footing at a depth of 3m below the base. Assume the footings are placed at depth of 2m below the ground surface. Use Boussinesg's formula for line loads. (6 marks) **b)** Outline the mohr- coulomb failure theory. (4 marks) c) Briefly discuss the direct shear test of measuring shear strength. (10 marks) **Question Three** a) Outline the factors that affect mechanical stability of soils. (5 marks) **b)** Briefly discuss the following categories of admixtures used in soil stabilization: Cementing materials (i) Modifiers (ii) Water proofing agents (iii) Water retaining and retarding agents (10 marks) (iv) c) Compute the shearing strength of soil along a horizontal plane at a depth of 4m in a deposit of sand $\phi = 35^{\circ}$; having the following properties; angle of internal friction Dry unit weight $d = 17 KN/m^{3}$, specific gravity Gs = 2.7

Assume the ground water table is at a depth of 2.5m from the ground surface. Also find the change in shear strength when the water table rises to the ground surface. (5 marks)

Question Four

a)	Using illustrations, discuss the types of circular surfaces failure	(10 marks)
b)	Outline the THREE stages to the analysis of slope stability	(6 marks)
c)	Outline the shearing characteristics of a soil.	(4 marks)
Question Five		
	Explain the following terms as applied in soil mechanics: (i) Angle of obliquity (ii) Principal plane (iii) Shear strength (iv) Cohesion Compute the factor of safety of a slope of infinite extent having a slope of angle = $\phi = 30^{\circ}$ made of cohesionless soil with . $\phi_m = 20^{\circ}, e = 0$	(2 marks)
	 Analyze the same slope if it is made of clay having C' = 30KN/m², under the following conditions: (i) When the soil is dry (ii) When water seeps parallel to the surface of slope (iii) When the slope is submerged 	and G _s = 2.7, (8 marks)
c)	Outline the factors upon which cohesion (c) and normal stress $\begin{pmatrix}\delta\end{pmatrix}$ depend when equation.	using Coulomb's (2 marks)