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SECTION A (COMPULSORY) 

Question One (30 marks)

a) Define the following terms as used in linear and Boolean Algebra

i) Simple proposition (2 marks)
ii) Singular matrix (2 marks)
iii) A vector (2 marks)

b) Find the parametric equation for the line through the points P(-3, 2, -3) and Q(1, -1,4) (4 marks)
c) Find the value of a if the following matrix is singular. (4 marks)
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d) Show that 
  BABAAU '

(4 marks)

e) Find the value of a if the vectors 
kjaiA 22 



 and 

kjiB 236 


 are perpendicular.

(5 marks)
f) (i)  Find the determinant of the matrix. (3 marks)
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in which row 1 row 3 are the same.
(ii)  What conclusion can you draw from your answer above? (2 marks)

g) Find the direction of vector of 
kjiA 732 

 (2 marks)

SECTION B (Answer any TWO questions from this section) 

Question Two (20 marks)

a) Find the unit vectors that are tangent and normal to curve 
xy 1tan 

 at 








4
,1


. (7 marks)

b) If 

kia 34
˜



  and 

kjib 52
˜



 find 

|32|
˜˜
ba

(3 marks)

c) Find the angle between the two planes
7263  zyx

 and 
522  yx

(6 marks)

d) If 
kjiA 22 

 and 
,236 kjiB 
 find the projection vector of A onto B. (4 marks)

Question Three (20 marks)

a) Define the following terms:
i) Proposition (2 marks)
ii) Conjecture (2 marks)

b) Construct a truth table for the statement: 
  srvrvsqp ˜qP 

(10 marks)

c) Show that 
B'AB-A 

(6 marks)
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Question Four (20 marks)

a) Define the following terms as used in linear algebra.
i) Matrix (1 mark)
ii) Zero matrix (1 mark)
iii) Diagonal matrix (1 mark)

b) (i)  State the Cramer’s rule for a 3x3 matrix. (4 marks)

(ii)  Using Cramer’s rule solve the matrix equation. (8 marks)
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44z2yx
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c) Use Gauss-Jordan elimination method to solve the equation.
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(4 marks)

Question Five (20 marks)

a) Given that 
2(B)3,(A) 

 and 
  1BA 

 .  Find:

i)
 A'

(2 marks)

ii)
 B A'

(2 marks)

iii)
 BA 

(2 marks)

b) Calculate the Eigen values of the matrix A and its corresponding Eigen vectors if 
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(6 marks)

c) Find the parametric and Cartesian equation for the line through
 5,9,2 P

, parallel to 

kjv 32
˜



 
(5 marks)

d) Find a unit sector perpendicular to both 
kjiA 


2

and 
kjiB 2



(3 marks)
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