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SECTION A (Compulsory)
QUESTION ONE (30 MARKS)

a) Define a partial differential equation and give an example [2 Marks]

¢(x+y+z,x2+y2—z2):0

hence find the differential equation arising from (5 marks)
I _dy__ de
xy y>  xyz-2x’
b) Find the integral curves of the equation (5 marks)
(xzz - y3)dx +3xy’dy + x’dz =0
¢) Show that the equation is integrable (3 marks)
u, =a‘u,
d) Show that the wave equation is variable separable (3 marks)
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r+6s+9t=0

e) Solve the equation (4 marks)
0X O0X 5,
—y—=Xx"+y
ox~ dy
f) Express the partial differential equation in polar coordinates and hence
solve the equation. (8 marks)

SECTION B (Attempt any TWO questions)
QUESTION TWO (20 MARKYS)

x*+y*2fyz+d =0

a) Find the orthogonal trajectories on the surface of its intersection with the
z=c
planes where c is a parameter [10 Marks]

F(x,y,z):O G(x,y,z)zO
b) Consider a curve which is the intersection of the surfaces and ,

(dx. dy, dz)a[a(F,G) , o(F,G) , B(F,G)}
dy.z) " dlzx)  olxy)
prove that . Hence show that the directional cosine
plx,y,z) fx*+gy’+hz’ =L,x+y+z=1
of the tangent at the point to the conic are
(gy —hz,hz— fx— gy
proportional to (10 marks)

QUESTION THREE (20 MARKS)

a) Solve the following heat distribution equation by the method of separation of variables

du ,0Uu

—=c"—-—-7<xZ<7mt>0

ot ox’

a -mw<x<0
u(x,O) =
u(O,t)zu(ﬂ,t)=0t>O -a O<x<rmw
and (15 marks)
v=fly-3x),

b) Show that where fis arbitrary function is the general solution of the equation
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G
ox dy

Hence find a particular solution which satisfies v(0,y) = 4 sin y.

5
marks)
QUESTION FOUR (20 MARKYS)
u du_
o ox
a) Using Laplace transform method, solve the partial differential equation Subject
u(x,0) =e™* and u(x,t)
to the initial conditions is bounded for x>0 t>0. (12 marks)
2 2| _
(D?+3D,D, +2D?) =12xy
b) Solve (8 marks)
QUESTION FIVE (20 MARKS)
z=px+9y+ pq
a) Find in its simplest form the integral surface of (whose solution is
z=ax+by+ab X=T,y=7T,2=1"
) passing through the curve (10 marks)
XZ yZ ZZ
? + F + C—z = 1
b) Find the partial differential equation arising from (5 marks)
2’z )
——+18xy" +sin(2x—-y)=0

¢) Solve by direct integration (5 marks)
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