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Question One (Compulsory)

a) Describe the orthogonal trajectories of  
0,2  kkxy

(6 marks)

b) Obtain the general solution to the partial differential equation 
    yxqxzpzy 

(4 marks)
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c) Derive the partial differential equations arising from 

   axybxaxyxaz  22 22
1

(6 marks)

d) Show  that  the  sets  of  parametric  equation  
uazvuayvuax cos,sinsin,cossin 

and
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represent  the  same  surface  of  a  sphere,  centre  of
origin O. (6 marks)

e) Find the complete solution of 

  xyezdDxDyD yxz
yx 1223 32  

(8 marks)

Question Two 

a) Find the direction cosines of the space curve defined by the parametric equations.
232 5.1,25.0,5.0 szsysx 

through 
6,2,2

(6 marks)

b) A long rectangular metal plate has its two long sides and the far end at 

oO
and the base at 

o100
.  The

width of the plate is 10cm.  Find by the method of separation of variables, the steady-state temperature
distribution inside the plate. (14 marks)

Question Three 

a) Use Laplace Transforms to solve the partial equation:
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subject to the initial condition 
  xeoxu 5, 

and
  0,,  totou

 given that 
 txu ,

is bounded for 
0,0  xt

(7 marks)

b) An infinite metal plate covering the first quadrant has the edge along the y-axis held at 0; and the edge
along the x-axis, held at :
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Use Fourier  transform to  find  the  steady-state  temperature  distribution  as  a  function  of  x  and y.
Assume temperature distribution as function of x and y.  Assume temperature of zero as y tends to
infinity. (13 marks)

Question Four 

a) Solve the system:
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 subject to the initial conditions 
  301 y

 and 
  102 y

(14 marks)

b) Find the General solution for 
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(6 marks)

Question Five

a) Find the orthogonal trajectories on the cone 
tan222 zyx 

 of its intersection with the family of
planes parallel to z = 0. (10 marks)

b) Find the general integral of the partial differential equations  
     22 2212 yxqxzpxy 

 and
also the particular integral which passes through the line x = 1, y = 0 (10 marks)
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