

# TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health 

## Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS<br>UNIVERSITY EXAMINATION FOR DEGREE OF:<br>BACHELOR OF SCIENCE IN INFORMATION TECHNOLOGY (BSIT)

## SMA 2230: PROBABILITY \& STATISTICS II

END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2014
TIME ALLOWED: 2 HOURS

## Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

## Question One (Compulsory)

a) (i) Give TWO properties of a probability density function. ..... (2 marks)(ii) Define a random variable(1 m ark)
b) Let C be a constant and consider the density function for the random variable Y :
$f(g)=\left\{\begin{array}{cc}y^{2}, & 0 \leq y \leq 2 \\ 0, & \text { elsewhere }\end{array}\right.$
(i) Find the value of C
(ii) Find the cumulative distribution function $f(y)$ (3 marks)
(iii)

Find E(Y) marks)
(iv) Find Var (Y)
c) In a semiconductor manufacturing process. Three wafers from a lot are tested. Each wafer is classified as pass or fail. Assume that the probability that a wafer passes the test is 0.8 and that wafers are independent. Determine the probability mass function of the number of wafers from a lot that pass the test.
d) If $X$ is binomially distributed with 6 trials and probability of success is equal to $1 / 4$ at each attempt, what is the probability of;
(i) Exactly 4 successes
(2 marks)
(ii) At least one success
(2 marks)
e) From a long term experience a factory owner knows that a worker can produce a product in an average time of 89 minutes. However, on Monday morning there is the impression that it takes longer. To test whether this impression is correct a sample ( $\mathrm{n}=12$ ) is taken with mean of 92.2 and standard deviation of 10.75 . We assume that the production time is normal. Verify whether this impression is correct at 5\% significance level:
(i) State the null and alternative hypothesis
(2 marks)
(ii) Compute the test statistics at $5 \%$ significance level
(2 marks)
(iii) What are your conclusions

## Question Two

a) A telephone operator handles on average 5 calls every 3 minutes:
(i) What is the probability that there will be no calls in the next minute?
(ii) What is the probability that there will be at least two calls?
(Hint: Use Poisson Distribution)
(6 marks)
b) The probability that a light bulb will fail on any given day is 0.001 , what is the probability that it will last at least 30 days. (Hint: Use Geometric Distribution)
(4 marks)
c) Benzene is a possible cancer-agent. It is suspected that the concentration of Benzene in the air from a chemical company is greater than 1 ppm . The following sample is collected to test this claim:

| 0.21 | 1.44 | 2.54 | 2.97 | 0.00 |
| :--- | :--- | :--- | :--- | :--- |
| 3.91 | 2.24 | 2.41 | 4.50 | 0.15 |
| 0.30 | 0.36 | 4.50 | 5.03 | 0.00 |
| 2.89 | 4.71 | 0.85 | 2.60 | 1.26 |

(i) State the null and alternative hypothesis
(2 marks)
(ii) Test the hypothesis
(iii) What is your conclusion

## Question Three

a) Batches that consist of 50 coil springs from a production process are checked for conformance to customer requirements; the mean number of nonconforming coil springs in a batch is 5 . Assume that the number of nonconforming springs in a batch denoted as X , is a binomial random variable:
(i) What are $n$ and $p$ ?
(ii) What is the probability that the number of nonconforming springs is at most 2 (4 marks)

$$
P(X \geq 49)
$$

(iii) Find marks)
b) The number of flaws in bolts of cloth in textile manufacturing is assumed to be Poisson distributed with a mean of 0.1 flaw per square meters.
(i) What is the probability that there are two flaws in a 1 square meter of cloth?
(ii) What is the probability that there is one flaw in 10 square meters of cloth?
(iii) What is the probability that there are no flaws in 20 square meters of cloth? marks)
c) Write the formula of the variance of a random variable following binomial distribution.
(1 mark)

## Question Four

a) Assume $X$ is normally distributed with a mean of 10 and a standard deviation of 2 . Determine the following:

$$
P(X<13)
$$

(i)

$$
P(6<X<14)
$$

(ii)

$$
P(X>9)
$$

(iii)
marks)

$$
f(x)=\left\{\begin{array}{cc}
x / 8 & \text { if } 3<x<5 \\
0 & \text { if elsewhere }
\end{array}\right.
$$

b)

Determine the following probabilities:

$$
P(X>3.5)
$$

(i)

$$
P(4<X<5)
$$

(ii)

$$
P(X<4)
$$

(iii)

## marks)

(iv)Determine the mean of $x$
(v) Determine the variance of $x$
(3 marks)
(3 marks)
(2
(2 marks)
(2 marks)

## Question Five

a) Two machines are used for filling plastic bottles with a net volume of 16.0 ounces. The fill volume

$$
\delta_{1}=0.02 \quad \delta_{2}=0.025
$$

can be assumed normal with standard deviation
and
ounces. A member of the Quality Engineering staff suspects that both machines fill to the same mean net volume, whether or
not this volume is 16.0 ounces. A random sample of 10 bottles is taken from the output of each machine.

| Machine 1 |  | Machine 2 |  |
| :--- | :--- | :--- | :--- |
| 16.03 | 16.01 | 16.02 | 16.03 |
| 16.04 | 15.96 | 15.97 | 16.04 |
| 16.05 | 15.98 | 15.96 | 16.02 |
| 16.05 | 16.02 | 16.01 | 16.01 |
| 16.02 | 15.99 | 15.99 | 16.00 |
|  |  |  |  |
|  | $\alpha=0.05$ |  |  |

Do you think the Engineer is correct 2 use

## (12 marks)

b) An Engineer who is studying the tensile strength of a steel alloy intended for use in golf club shafts $\delta=60 \mathrm{ps}:$ knows that tensile strength is approximately normally distributed with A random sample of

$$
\bar{x}=3250
$$

12 specimens has a mean tensile strength of
ps. Test the hypothesis that mean strength is $\alpha=0.01$
3500 PS: Use
(8 marks)

