TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR DEGREE OF:
BACHELOR OF TECHNOLOGY IN ANALYTICAL CHEMISTRY

APS 4103: PHYSICS FOR CHEMISTS

END OF SEMESTER EXAMINATION
SERIES: APRIL 2015
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FOUR questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Take

$$
\begin{aligned}
& \varepsilon_{o}=8.85 \times 10^{-12} \mathrm{Fm}^{-1} \\
& K=1 / 4 \pi \varepsilon_{o}=9 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2} \\
& g=9.8 \mathrm{~ms}^{-2}
\end{aligned}
$$

Mass of electron $=1.6 \times 10^{-19} \mathrm{C}$
Permeability of free space, $\mu \mathrm{o}=4 \Pi \times 10-7 \mathrm{Hm}-1$
Universal gravitational constant $\mathrm{G}=6.63 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~g}^{-2}$

Question One (Compulsory)

a) Use dimensional analysis to check if the following equation is valid:

$$
V^{2}=2 a x
$$

where V is the velocity , a is the acceleration and x is the displacement
(3 marks)
b) (i) Differentiate between velocity and speed
(ii) An object is dropped into a well and hits the water 2 seconds after being released. How deep is the well
(iii) If the velocity of a particle changes by the same amount for each similar time interval what can you say about the acceleration
(1 mark)
c) Find the equivalent resistance of the following combinations of resistors:
(i) Parallel arrangement of $3 \Omega, 2 \Omega$ and 5Ω resistor
(ii) Series combination of 3Ω and 4Ω resistor in parallel with a 5Ω resistor (2 marks)
d) Explain the term half life as used in discharging of a capacitor
(1 mark)
e) (i) Show that for a linear conductor or electric current, resistivity j, is given by:

$$
\tau=\frac{R A}{L}
$$

where R is the resistance and L is the length of the conductor
(iii) Distinguish between ohmic and non-ohmic conductors
f) A $2.00 \mu \mathrm{~F}$ and a $4.00 \mu \mathrm{~F}$ capacitors are connected to a 60.0 v battery. How much charge is supplied by the battery in charging the capacitors when the wiring is in series
(3 marks)
g) (i) State Ohm's Law
(ii) Show that the effective resistance R of three resistors connected in parallel is given as:

$$
\begin{equation*}
R_{T}=\frac{R_{1} R_{2} R_{3}}{R_{1} R_{2}+R_{2} R_{3}+R_{1} R_{3}} \tag{4marks}
\end{equation*}
$$

h) The charges in figure 1 below are placed at the corners of an equilateral triangle of side a

Figure 1

Show that the force experienced by charge Q1 is given by:

$$
F=\frac{a^{3} k Q^{3}}{a^{2}}
$$

if all the charges are identical
(6 marks)

Question Two

a) What do you understand by the term capacitance?
(2 marks)

$$
C 1=2 \mu F, C_{2}=C_{3}=0.5 \mu F
$$

b) In the circuit below, and $v=6 v$

Figure 2

(i) Determine the charge in each capacitor
(3 marks)
(ii) Calculate the potential difference across each capacitor
c) A steady uniform current of 5 mA glows axially along a metal cylinder of cross sectional area $0.02 \mathrm{~mm}^{2}$, length 5 m and resistivity $3 \times 10^{-5} \Omega \mathrm{~m}$. Calculate:
(i) The potential difference across the ends of the cylinder
(ii) The rate of heat production
d) State the TWO Kirchhoff's Laws

Question Three

a) Define the following terms and give the dimensions:
(i) Distance
(ii) Displacement
(iii) Acceleration
(iv)Friction
(8 marks)
b) Derive Newton's second law
c) A 600 N object is to be given an acceleration of $0.7 \mathrm{~ms}^{-2}$. How large an unbalanced force must act upon it?
(3 marks)
d) Two masses of 0.5 kg and 0.25 kg are connected by a light inextensible string, which passes over a smooth light pulley. If the system is released from rest with the string taut, find the acceleration of each mass and distance travelled in 1 second from rest
(6 marks)

Question Four

a) (i) State Coulomb's Law for the electrostatic force between two point charges
(2 marks)
(ii) Three positive charges lie along the same line as shown in figure 2. Derive an expression for the force acting on Q2
(2 marks)
b) A $10 \mu \mathrm{~F}$ capacitor is charged for a 30 V supply and then connected across an uncharged $50 \mu \mathrm{~F}$ capacitor. Calculate the:
(i) Final potential difference across the combination
(4marks)
(ii) Initial and final energies
c) Consider two charges Q_{1} and Q_{3} separated initially by a distance r . If the charge Q_{2} is moved towards Q_{1} such that the new separation distance is r , show that the work done in moving the charge Q_{2} is

$$
W=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{O}} \frac{1}{r}-\frac{1}{r_{1}}
$$

given by:
(6 marks)

