

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR:

BACHELOR OF TECHNOLOGY IN ANALYTICAL CHEMISTRY (BTAC 13S)

APS 4103: PHYSICS FOR CHEMISTS

END OF SEMESTER EXAMINATION SERIES: APRIL 2014

TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
 - Scientific Calculator

This paper consist of **FOUR** questions Answer question **ONE** (**COMPULSORY**) and any other **THREE** questions Maximum marks for each part of a question are as shown This paper consists of **FOUR** printed pages

	${\cal E}_o$		
Take:		=	8.85 x 10 ⁻¹² Fm ⁻¹
			$\frac{1}{2} = 9 \times 10^9 Nm^2 C^{-2}$
			$4\pi\varepsilon_{o}$
	k	=	
	g	=	9.8ms ⁻²
Electron charge		=	1.6 x 10 ⁻¹⁹ C
Mass of electron		=	9.11 x 10 ⁻³¹ kg
	μ_{o}		$4\pi \times 10^{-7} Tm/A$
		=	
Proton Mass		=	1.7 x 10 ⁻²⁷ kg

 $1\mu C$ 10⁻⁶C = $1\mu C$ 10⁻⁹C =1eV 1.6 x 10⁻¹⁹J = 6.63 x 10⁻¹¹ Nm²kg² Universal gravitational constant G =

Question One (Compulsory)

- **a)** Define the following terms:
 - Momentum (i)
 - (ii) Impulse
 - (iii) Coefficient of restitution
- **b)** Consider two masks m_1 and m_2 arranged as shown. Assume that the string is massless and that the pulley is frictionless. If the tale is horizontal.

 m_1

Show that the tension T, acting on the massless string is given by:

$$T = \left(\frac{m_1 \ m_2}{m_1 + m_2}\right)g$$

where g is eh acceleration due to gravity on the earth's surface.

(5 marks)

(3 marks)

- (ii) Other than temperature, explain two other factors that influence resistance of a linear conductor of electric current. (2 marks)
- **d)** (I) Define capacitance.

c) (i) State Ohm's law

$$\mu F, \ C_2 = C_3 = 0.5 \mu F$$
(II) In the circuit below, C₁ = 2 and V = 6V.

(1 mark)

(2 marks)

an acceleration of 2 x 10¹² ms⁻¹ directed opposite to the initial velocity. How far does the

 C_1

particle travel before coming to rest? How long does the particle remain at rest? (4 marks)

Question Four (15 marks)

- **a)** State Kirchoff's Laws.
- **b)** Show that the effective resistance R of three resistors connected in parallel is given as:

$$P_{T} = \frac{R_{1} R_{2} R_{3}}{(R_{1}R_{2} + R_{2}R_{3} + R_{1}R_{3})}$$
(4 marks)

c) Consider the circuit below:

(i) Find the equivalent resistance combination of resistors in the circuit. (5 marks)
(ii) Compute current I if the applied voltage is 6V (4 marks)

Question Five (15 marks)

a) Show that the potential V at a distance r from a point charge Q in a medium of permittivity is given

by:

$$W = \frac{Q_1 Q_2}{4\pi\varepsilon_o} \left(\frac{1}{r} - \frac{1}{r^1}\right)$$

Three positive charges lie along the same line as shown in the figure below. Derive an expression for the force acting on Q_2 .

(4 marks)

+

b) The charges below are placed at the corners of an equilateral triangle of side a.

(2 marks)

Show that the force experienced by charge Q_1 is given by the expression:

$$F = \frac{\sqrt{3} KQ^2}{a^2}$$

if the charges are identical.

- (5 marks)
- **d)** Consider two charges Q_1 and Q_2 separated by a distance r_1 . If the charge Q_2 is moved towards Q_1 such that the new separation distance r_1 , show that the work done in moving Q_2 is given by:

$$W = \frac{Q_1 Q_2}{4\pi\varepsilon_o} \left(\frac{1}{r} - \frac{1}{r^1}\right)$$

(6 marks)