

TECHNICAL UNIVERSITY OF MOMBASA
Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS

UNIVERSITY EXAMINATION FOR:
BACHELOR OF TECHNOLOGY IN ANALYTICAL CHEMISTRY (BTAC 13S)
APS 4103: PHYSICS FOR CHEMISTS

END OF SEMESTER EXAMINATION
 SERIES: APRIL 2014
 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FOUR questions
Answer question ONE (COMPULSORY) and any other THREE questions
Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages

Take:

$$
\begin{aligned}
\varepsilon_{o} & \\
& =8.85 \times 10^{-12} \mathrm{Fm}^{-1} \\
& \\
& \frac{1}{4 \pi \varepsilon_{o}}=9 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2} \\
\mathrm{k} & = \\
\mathrm{g} & = \\
& =9.8 \mathrm{~ms}^{-2} \\
& =1.6 \times 10^{-19} \mathrm{C} \\
\mu_{o} & =9.11 \times 10^{-31} \mathrm{~kg} \\
& =4 \pi \times 10^{-7} \mathrm{Tm} / \mathrm{A} \\
& =1.7 \times 10^{-27} \mathrm{~kg}
\end{aligned}
$$

Electron charge
Mass of electron

Proton Mass

$$
\begin{aligned}
1 \mu \mathrm{C} & \\
& =10^{-6} \mathrm{C} \\
1 \mu \mathrm{C} & \\
& =10^{-9} \mathrm{C} \\
\text { Universal gravitational constant } \quad 1 \mathrm{eV} & =1.6 \times 10^{-19} \mathrm{~J} \\
\mathrm{G} & =6.63 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{2}
\end{aligned}
$$

Question One (Compulsory)

a) Define the following terms:
(i) Momentum
(ii) Impulse
(iii) Coefficient of restitution
b) Consider two masks m_{1} and m_{2} arranged as shown. Assume that the string is massless and that the pulley is frictionless. If the tale is horizontal.
m_{1}

Show that the tension T , acting on the massless string is given by:

$$
T=\left(\frac{m_{1} m_{2}}{m_{1}+m_{2}}\right) g
$$

where g is eh acceleration due to gravity on the earth's surface.
c) (i) State Ohm's law
(ii) Other than temperature, explain two other factors that influence resistance of a linear conductor of electric current.
d) (I) Define capacitance.

$$
\mu F, C_{2}=C_{3}=0.5 \mu F
$$

(II) In the circuit below, $\mathrm{C}_{1}=2$ and $\mathrm{V}=6 \mathrm{~V}$.

C_{1}

(i) Compute the charge in each capacitor
(ii) Calculate the potential difference across each capacitor.
e) A steady uniform current of 5 mA flows axially along a metal cylinder of cross sectional area Ωm
$0.2 \mathrm{~mm}^{2}$, length 5 m and resistivity 3×10^{-5}. Calculate:
(i) The potential difference between the ends of the cylinder. (3 marks)
(ii) The rate of heat production in the cylinder.

Question Two (15 marks)

a) What do you understand by the term 'time constant' of a discharging computer?

Ω

b) A 15.2 k resistor and a capacitor C , are connected in series and a 13.0 V potential is suddenly applied $\mu \mathrm{s}$. to the circuit. The potential difference across the capacitor rises from zero to 5.0 V in 1.28
(i) Calculate the time constant of the circuit
(ii) Calculate the capacitance of the capacitor
(iii) Determine the half life of the capacitor
$\mu F \quad \quad \mu F$
c) A 2.00 and a 4.00 capacitors are connected to a 60.0 V battery. How much charge is supplied by the battery in charging the capacitors when wiring is in series.

Question Three (15 marks)

a) (i) State Newton's laws of motion.
(ii) A 600 N object is to be given an acceleration of $0.7 \mathrm{~ms}^{-2}$. How large an unbalanced force must act upon it to give it this acceleration?
b) When is a body said to move with uniform acceleration?
c) (i) A ball is thrown vertically into the air at $50 \mathrm{~ms}^{-1}$. How high will it rise and how long will it take to reach that height.
(ii) A particle is fired with a constant velocity of $10 \times 10^{5} \mathrm{~ms}^{-1}$ into a region where it is subjected to an acceleration of $2 \times 10^{12} \mathrm{~ms}^{-1}$ directed opposite to the initial velocity. How far does the
particle travel before coming to rest? How long does the particle remain at rest? (4 marks)

Question Four (15 marks)

a) State Kirchoff's Laws.
b) Show that the effective resistance R of three resistors connected in parallel is given as:

$$
\begin{equation*}
P_{T}=\frac{R_{1} R_{2} R_{3}}{\left(R_{1} R_{2}+R_{2} R_{3}+R_{1} R_{3}\right)} \tag{4marks}
\end{equation*}
$$

c) Consider the circuit below:

(i) Find the equivalent resistance combination of resistors in the circuit.
(ii) Compute current I if the applied voltage is 6 V

Question Five (15 marks)

a) Show that the potential V at a distance r from a point charge Q in a medium of permittivity is given by:

$$
W=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{o}}\left(\frac{1}{r}-\frac{1}{r^{1}}\right)
$$

Three positive charges lie along the same line as shown in the figure below. Derive an expression for the force acting on Q_{2}.
(4 marks)
$+$
b) The charges below are placed at the corners of an equilateral triangle of side a.

Q_{2}

Show that the force experienced by charge Q_{1} is given by the expression:

$$
F=\frac{\sqrt{3} K Q^{2}}{a^{2}}
$$

if the charges are identical.
(5 marks)
d) Consider two charges Q_{1} and Q_{2} separated by a distance r_{1}. If the charge Q_{2} is moved towards Q_{1} such that the new separation distance r_{1}, show that the work done in moving Q_{2} is given by:

$$
W=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{o}}\left(\frac{1}{r}-\frac{1}{r^{1}}\right)
$$

