

TECHNICAL UNIVERSITY OF MOMBASA
Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR:

BACHELOR OF SCIENCE IN MATHEMATICS \& COMPUTER SCIENCE
APS 4112: PHYSICS ELECTRONICS

SPECIAL/SUPPLEMENTARY EXAMINATION
 SERIES: JULY 2014
 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FOUR questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages

Question One (Compulsory)

a) Define the following terms:
(i) Donor and acceptor impurities
(ii) Rectification
(iii) Peak inverse voltage
(iv) Pn junction
(v) Zener diode
b) Distinguish between conductors, semiconductors and insulators.
c) Find the current flowing through the resistors and the corresponding voltage drops in the resistors in the figure below (assume the diodes are ideal)
d) A half wave crystal diode rectifier is transformer fed from a 240 V line. Calculate:
(i) Turn ratio
(ii) Diode Piv rating if the circuit provides an output of 24 Vdc .
e) Explain THREE types of filter circuits.
f) Explain how a Zener diode acts as a voltage regulator.
g) (i) In a common base connection, the emitter current is 2 mA . If the emitter circuit is open, the
(ii) Draw circuit diagrams to distinguish between npn and pnp transistors.

Question Two

a) Explain the working of a npn and pnp transistors.

$$
\alpha=0.9 \quad 0.94
$$

b) Find the value of B if (i) and (ii) and (iii) 0.97.
c) Explain the operation of a transistor as:
(i) An amplifier
(ii) A switch
d) The base current in a transistor is 0.02 mA and emitter current is 1.0 mA . Calculate the values of α and β
e) Define the following:
(i) Tished Amplifiers

Question Three

a) Explain transistor biasing by:
(i) Base resistor method
(ii) Biasing with feedback resistor

$$
\beta=120
$$

b) The figure below shows a Silicon transistor with d.c. load line and determine the operating point.
biased by base resistor method. Draw the (7 marks)
c) The figure below shows a two stage transistor amplifier biased by base resistor method. What are $\beta=110$ collector-emitter voltages? Assume and $\mathrm{VBE}=0.77 \mathrm{~V}$

Question Four

a) Define the following terms in relation to transistor amplifier circuit.
(i) Input resistance
(ii) Output resistance
(iii) d.c. load
(iv) a.c load

$$
\beta=80 \quad K \Omega
$$

b) In the figure below the transistor has . Find the voltage gain if input resistance Rin $=0.4$
(6 marks)
c) State THREE features incorporated into voltage amplifier and power amplifier so as to achieve high amplification.

Question Five

a) Define the following terms:
(i) Frequency response
(ii) Band width
(iii) Decibel gain
b) Express the following gains as a number:
(i) Power gain of 40 db
(2 marks)
(ii) Power gain of 53 db
c) A three stage amplifier has the first stage voltage gain of 200, second stage voltage gain of 300 and third stage of 500 . Find the total voltage gain in db .
d) A class A power amplifier has zero signal collector current of 40 mA . If the collector supply voltage is $4 v$ find:
(i) Maximum a.c. power output
(ii) Power rating of transistor
(iii) Maximum collector efficiency

