
 TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health
 Sciences

DEPARTMENT OF MATHEMATICS \& PHYSISCS
 DIPLOMA IN INFORMATION COMMUNICATION TECHNOLOGY (DICT 15J)

APS 2103: PHYSICS

END OF SEMESTER EXAMINATION
SERIES: APRIL 2015

TIME ALLOWED: 2 HOURS

Instructions to Candidates:
You should have the following for this examination
- Answer Booklet
- Mathematical Table
This paper consist of FIVE questions

Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
Question One (Compulsory)
a) Define the following terms:
(i) Time constant
(ii) Transmission ratio
(iii) Mutual inductance
(10 marks)
b) With the aid of a graph explain the Ohm's Law
c) Using symbols differentiate between step-up and step-down transformers
d) Calculate the maximum and minimum values of the resistors given the colour codes below:
(i) Red, Green, Yellow
(ii) Blue, Black, Purple, Silver
(iii) Yellow, Red, Yellow, Gold
(6 marks)
e) Three capacitors of $30 \mu \mathrm{~F}, 20 \mu \mathrm{~F}$ and $360 \mu \mathrm{~F}$ are connected in parallel, the network is then supplied with 30V d.c
(i) Draw the circuit diagram
(ii) Calculate the total capacitance in the circuit
(iii) Charge across $360 \mu \mathrm{~F}$ capacitor
(iv)Energy in the circuit
(10 marks)

Question Two

a) Define the following terms:
(i) Intrinsic semiconductor
(ii) Extrinsic semiconductor
(iii) Doping
marks)
b) With the aid of circuit, diagrams, explain the following terms:
(i) Forward biasing
(ii) Reverse biasing

Question Three

a) Using circuit diagrams, explain the operation of a full wave bridge rectifier
b) Three resistors of $200 \mathrm{~K} \Omega, 100 \mathrm{~K} \Omega$ and $80 \mathrm{~K} \Omega$ are connected in parallel, they are then connected in series to $50 \mathrm{~K} \Omega$ and $75 \mathrm{~K} \Omega$ resistor. The network is supplied with 50 V d.c. Calculate:
(i) Total resistance in the circuit
(ii) Total current in the circuit
(iii) Current through $200 \mathrm{~K}, 100 \mathrm{~K}$ and 80 K resistors.
(iv)Total power dissipated in the circuit

Question Four

a) With the aid of a circuit diagrams, explain the THREE bipolar transistor configuration
(5 marks)
b) Using graph, sketches explain the following transistors configurations:
(i) Input characteristics
(ii) Output characteristics
(iii) Transfer characteristics marks)

Question Five

a) Determine the colour codes of the following resistors:
$1.9 M \Omega \pm 20 \%$
(i)
$330 K \Omega \pm 10 \%$
(ii)

$$
470 M \Omega \pm 5 \%
$$

(iii)
$4.7 M \Omega \pm 2 \%$
(iv)

$$
M \Omega \pm 20 \%
$$

(v) 37700
b) A capacitor is connected in series to a resistor of $100 \mathrm{~K} \Omega$ for charging. It took $0.05 \mu \mathrm{~S}$ to charge the capacitor to its time constant. Calculate the value of that capacitor
c) A transformer with the turns ratio of $8: 1$ is supplied with $110 \mathrm{~V}, 60 \mathrm{~Hz}$. If the secondary current is 10 A , calculate:
(i) Primary current
(ii) Secondary voltage
(iii) Input power

