TECHNICAL UNIVERSITY OF MOMBASA
 Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR DEGREE OF:
BACHELOR OF SCIENCE IN MATHEMATICS \& COMPTUER SCIENCE

AMA 4323: ORDINARY DIFFERENTIAL EQUATIONS II
END OF SEMESTER EXAMINATION
SERIES: APRIL 2015
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of TWO printed pages

Question One (Compulsory)

a) (i) State the existence and uniqueness theorem for an nth order linear differential equation (3 marks)
(ii) Prove that the equation:

$$
\begin{aligned}
& 2 \frac{d^{3} y}{d x^{3}}+x \frac{d^{2} y}{d x^{2}}+3 x^{2} \frac{d y}{d x}-5 y=\sin x \\
& y(4)=3 \quad y^{11}(4)=-7 / 2
\end{aligned}
$$

has a unique solution

$$
y=e^{2 x} \quad(2 x+1) \frac{d^{2} y}{d x^{2}}-4(x+1) \frac{d y}{d x}+4 y=0
$$

b) (i) Prove that is a solution of
(ii) Find a linearly independent solution of the above equation by reducing the order
(iii) Hence write the general solution of the equation

$$
y y^{\prime \prime}=\left(y^{\prime}\right)^{2}
$$

c) Solve the non-linear equation
(4marks)
d) Use the Rodriguez formula for Legendre to find the polynomial for $\mathrm{P}_{1}(\mathrm{x})$ and $\mathrm{P}_{2}(\mathrm{x})$

$$
y z d x-z^{2} d y+x y d z=0
$$

e) (i) Verify that the equation is exact
(ii) Hence find the solution of the equation in (i) above

Question Two

a) Locate and classify the singular points of the equation:

$$
\begin{align*}
x^{4}-2 x^{3}+x^{2} \frac{d^{2} y}{d x^{2}}+2(x-1) \frac{d y}{d x}+x^{2} y & =0 \\
1-x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y & =0 \tag{7marks}
\end{align*}
$$

b) Find the power series of
about $\mathrm{x}=0$

Question Three

a) (i) Verify the condition of integrability of the equation:

$$
\begin{equation*}
\left(z+z^{3}\right) \cos d x-\left(z+z^{3}\right) d y\left(1+z^{2}\right)(y-\sin x) d z=0 \tag{3marks}
\end{equation*}
$$

(ii) Hence solve the above equation
b) Solve the following Bessel's equation up to the x^{4} term

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2} y\right)=0 \tag{12marks}
\end{equation*}
$$

Question Four

a) Solve the following equation by transforming to normal form:

$$
\begin{array}{r}
\left.y^{\prime \prime}+(2+4 / 3)^{x}\right) y^{\prime}+1 / 9\left(24+12 x+4 x^{2}\right) y=0 \\
2 t^{2}-y^{11} t y^{1}-3 y=0
\end{array}
$$

b) Find the general solution to reducing the order given that $y_{1}(t)=t_{-1}$ is a solution by the method for
c) Find the power series of the following Legendre's differential equation

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+p(p+1) y=0
$$

Question Five

$$
(3 x+2)^{2} y^{\prime \prime}+3(3 x+2) y^{\prime}-36 y=3 x^{2}+4 x+1
$$

a) Solve
(10 marks)
b) The differential equation of a shaft which whirling with the line bearings horizontal is given by:

$$
E I \frac{d^{4} y}{d x^{4}}-\frac{W w^{2} y}{g}=W
$$

where W is the weight of the shaft and w is the whirling speed. Taking the length of the shaft as 2 L with the origin at it's centre and short bearings at both ends:

$$
x= \pm 1, \quad y=\frac{d^{2} y}{d x^{2}}=0
$$

(i.e for

$$
y=g / 2 u^{2}\left[\frac{\cos m x}{\cos m L}+\frac{\cosh m x}{\cosh m L}-2\right] \quad M^{4}=\frac{W m^{2}}{g E I}
$$

Show that where and maximum deflection is $g / 2 w^{2}[\sec m L+\sec h m L-2]$

