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Question One (Compulsory)

a) Consider the equation: 
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(i) Show that the above differential equation is non-linear (3 marks)
(ii) Find the first integral of the above equation (3 marks)
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b) Show that the function 
  xxxy sec

 is a solution of the differential equation
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 (4 marks)
c) Solve the IVP by separation of variables method.

  2)0(;012  yydydxyx

(4 marks)

d) Show that the differential equation:
  022  xydydxyxyx

is homogeneous and hence solve it (4 marks)

e) Show that  the  differential  equation  
   dyxyxdxyxyx 2322 222 

= 0  is  exact  and find  its
general solution. (6
marks)

f) Solve the total differential equation 
  013 54  dyxdxyx

by integrating factors method when x =1,
y = 1 (5 marks)

Question Two

a) Solve the equations:

(i)
06'"4"  yyyy

(3 marks)

(ii)
044 2  yDD

(3 marks)

b) Find the general solution of:
013'9"3'"  yyyy

 (4 marks)

c) Solve the equation 

xx eeyy 234''"  

 by the method of undetermined coefficient with the condition:
when x = 0, y’ = -1, y” = 2 (10 marks)

Question Three
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b) Solve the differential equation 

42  x
dt

dx

given that x = 1 at t = 0 by laplace  transterm method
(4 marks)
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c) Show that 
xf cos1 

 and 
xf sin2 

 = are linearly independent solutions of the differential equation:
0"  yy

(3 marks)

d) Consider the differential equation  
    0'1"12  yyxyxx

 find the singular points of the above
differential equation and determine whether they are regular or irregular. (4 marks)

e) Show that  the  equation  
012'6'"3  yxyyx

 has  linearly independent  solutions  each  of  the  form
rxy 

(4 marks)

Question Four 

a) Find a series solution of the differential equation 

0'" 2  yyxy
 about the point x = 0 (10 marks)

b) Find two independent series solutions of the following Bessel equation of order one by method of
frobenious about the origin (10 marks)

  01'" 22  yxxyyx
 

Question Five

a) Briefly explain the difference between the degree and order of a differential equation  (2 marks)

b) Solve the second order differential equation:
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(9 marks)
c) The velocity of a particle moving along the x-axis is proportional to x. At time t = 0, the particle is

located at x = 3 and at time t = 12 seconds its at x = 6. Find its position when t = 6. (9 marks)
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