TECHNICAL UNIVERSITY OF MOMBASA
 Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR DEGREE OF:
 BACHELOR OF SCIENCE MATHEMATICS \& COMPUTER SCIENCE

AMA 4325: PARTIAL DIFFERENTIAL EQUATIONS I

END OF SEMESTER EXAMINATION
 SERIES: APRIL 2015
 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of TWO printed pages

Question One (Compulsory)

$$
x^{2}+y^{2}=2 c x
$$

a) Find The orthogonal trajectories of the one parameter family of curve where c is a constant

$$
\phi\left(x^{2}+2 y z, x+y+z\right)=0
$$

b) Derive the partial differential equation arising from in the form $\mathrm{Pp}+\mathrm{Qq}=\mathrm{R}$ (3 marks)
c) Show that the direction cosines for the tangent at the point ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) to the conic $a x^{2}+b y z+c z^{2}=1, x+y+z=1$ (by-cz, cz-ax, ax-by) are proportional to
d) Change the variables to polar coordinates in the partial differential equation:

$$
x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=\sqrt{x^{2}+y^{2}}
$$

Hence or otherwise solve the equation
(9 marks)

$$
r+2 s+10 t=\cos (2 x-3 y)
$$

e) Solve

Question Two

$$
\frac{\partial^{2} x}{\partial x \partial y}=x^{2} y
$$

$$
z(x, 0)=x^{2}
$$

a) Solve by direct integration
and find a particular solution for which and

$$
z(1, y)=\cos y
$$

(8 marks)

$$
p^{2} x+q^{2} y=z
$$

b) Use the Jacobi method to find a complete integral of the equation

Question Three

$$
q=-x p+p^{2}
$$

a) Solve by Charpits method
(10 marks)
b) Use Monge's integration method to find a complete solution of the equation:

$$
r+4 s+t+r t-s^{2}=2
$$

(10 marks)

Question Four

$$
z(x+y)=4
$$

a) Find the orthogonal trajectories of the conicoid
of a cone in which it is cut by the system

$$
x-y+z=k
$$

of planes where k is a parameter
b) Solve the heat conduction equation below by the method of separation of variables:

$$
\begin{gather*}
\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{k} \frac{\partial u}{\partial t}, k= \\
\left.\quad \begin{array}{r}
\text { constant } \quad \text { subject to the following boundary condition } \\
u=u(x, 0)=f(x), 0 \leq x \leq L \\
\partial x
\end{array}\right|_{x=0}=\left.\frac{\partial u}{\partial x}\right|_{x=L}=0, t \geq 0
\end{gather*}
$$

Question Five

$$
(2 x y-1) p+\left(z-2 x^{2}\right) q=2(x-y z)
$$

a) Find the general integral of the partial differential equation and also the particular integral which passes through the line $x=1$ and $y=0$
b) Classify and express in canonical form the partial differential equation

$$
\frac{\partial^{2} z}{\partial x^{2}}+\left(5+2 y^{2}\right) \frac{\partial^{2} z}{\partial x \partial y}+\left(1+y^{2}\right)\left(4+y^{2}\right) \frac{\partial^{2} z}{\partial y^{2}}=0
$$

and find the characteristics of the equation
(9 marks)

