

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR DEGREE OF:

BACHELOR OF SCIENCE MATHEMATICS & COMPUTER SCIENCE

AMA 4325: PARTIAL DIFFERENTIAL EQUATIONS I

END OF SEMESTER EXAMINATION SERIES: APRIL 2015 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables

- Scientific Calculator

This paper consist of **FIVE** questions Answer question **ONE (COMPULSORY)** and any other **TWO** questions Maximum marks for each part of a question are as shown

This paper consists of **TWO** printed pages

Question One (Compulsory)

a) Find The orthogonal trajectories of the one parameter family of curve where c is a constant
$$\phi(x^2 + 2yz, x + y + z) = 0$$

b) Derive the partial differential equation arising from where P, Q, R are functions of x, y, z (3 marks)
c) Show that the direction cosines for the tangent at the point (x, y, z) to the conic $ax^2 + byz + cz^2 = 1$, $x + y + z = 1$ ($by - cz$, $cz - ax$, $ax - by$) are proportional to (3 marks)

d) Change the variables to polar coordinates in the partial differential equation:

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = \sqrt{x^2 + y^2}$$

© 2015 – Technical University of Mombasa

 $v^2 + v^2 = 2cv$

Hence or otherwise solve the equation $r + 2s + 10t = \cos(2x - 3y)$

e) Solve

Question Two

 $\frac{\partial^2 x}{\partial x \partial y} = x^2 y$ **a)** Solve by direct integration $z(1, y) = \cos y$

- **Question Three**
- a) Solve by Charpits method
- b) Use Monge's integration method to find a complete solution of the equation: $r + 4s + t + rt - s^{2} = 2$

b) Use the Jacobi method to find a complete integral of the equation

 $q = -xp + p^2$

Question Four

- of a cone in which it is cut by the system a) Find the orthogonal trajectories of the conicoid x - y + z = kof planes where k is a parameter (9 marks)
- b) Solve the heat conduction equation below by the method of separation of variables:

 $\frac{\partial^2 u}{\partial x^2} = \frac{1}{k} \frac{\partial u}{\partial t}, k =$

subject the following boundary condition constant to $u = u(x,0) = f(x), 0 \le x \le L \left. \frac{\partial u}{\partial x} \right|_{x=0} = \frac{\partial u}{\partial x} \left|_{x=L} = 0, \ t \ge 0$ (11 marks)

Question Five

 $(2xy-1)p + (z-2x^{2})q = 2(x-yz)$ a) Find the general integral of the partial differential equation and also the particular integral which passes through the line x = 1 and y = 0(11 marks)

 $z(x,0) = x^2$

and

(8 marks)

(12 marks)

(10 marks)

(10 marks)

z(x+y) = 4

and find a particular solution for which

 $p^2 x + q^2 y = z$

b) Classify and express in canonical form the partial differential equation $\frac{\partial^2 z}{\partial x^2} + (5 + 2y^2) \frac{\partial^2 z}{\partial x \partial y} + (1 + y^2) (4 + y^2) \frac{\partial^2 z}{\partial y^2} = 0$

and find the characteristics of the equation **(9 marks)**