

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR:

BACHELOR OF TECHNOLOGY INFORMATION TECHNOLOGY

ICS 2211: NUMBERAL LINEAR ALGEBRA

END OF SEMESTER EXAMINATION SERIES: DECEMBER 2013 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables

- Scientific Calculator

This paper consist of **FIVE** questions Answer question **ONE** (**COMPULSORY**) and any other **TWO** questions Maximum marks for each part of a question are as shown This paper consists of **FOUR** printed pages

Question One (Compulsory)

- **a)** Estimate the eigen values of the matrix A using the Gerchgorin bounds:
 - $A = \begin{pmatrix} 1 & 2 & -1 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{pmatrix}$

(4 marks)

b) Prove that the minimal polynomial m() of a matrix $A(n \times n)$ divides every polynomial that has A as a zero. (4 marks)

c) Consider the matrix A

$$A = \begin{pmatrix} \lambda & 2 \\ 2 & \lambda - 3 \end{pmatrix}$$

λ

Find A⁻¹ if A is non-singular for what value of is the matrix A nonsingular. (3 marks) **d)** Use Cramer's rule to solve the system of linear equations:

-2x+3y-z=1x + 2y - z = 4-2x - v + z = -3

e) Given the second derivative mid-point formula

 $f''(x_o) = \frac{1}{h^2} \{ f(x_o - h) - 2f(x_o) + f(x_o + h) \} - \frac{h^2}{12} f^{(4)}(\xi)$ $\frac{h^2}{12}f^{(4)}(\xi)$ $x_{_o} - h < \xi < x_{_o} + h$ for some f''(2)is the error term and approximate where given that $f(x) = xe^{x}$

taking h = 0. and h = 0.2. Give the errors

f) Apply Gaussian elimination to the system

 $E_1: 0.003000 \ x_1 + 59.14 x_2 = 59.17$

 $E_2 = 5.291 x_1 - 6.130 x_2 = 46.78$

 $R_1 = A_1 Q_1 - B 1 Q_2$

 $R_2 = A_2 Q_2 - B2 Q_2^2$

using partial pivoting and four-digit arithmetic with rounding, compare the results with the exact solution $x_1 = 10.0$ and $x_2 = 1.00$ that the differential equation $(2x^{2} - xy^{2} - 2y + 3)dx - (x^{2}y + 2x)dy$

is exact and find its general solution. (6 marks)

 $C = A_3 + B_3(Q_1 + Q_2)$

g) Master tobacco finds that it can sell in two distinct markets. If it sells Q₁ units in the first market and Q₂ units in the second market, the revenue functions are:

Given that the A's and B's are known constants (positive) find the quantities Q1 and Q2 that will

and the total cost function is

Question Two

maximize profit.

a) Define the following terms as used in linear programming:

h) Let B and C be inverse of A. Then show that BA = AC = I

- Optimization (i)
- (ii) Feasible solution
- (iii) Constraints

(5 marks)

(2 marks)

(5 marks)

(5 marks)

- (iv) Objective function
- **b**) Broadways produces two types of bread one at a cost of 50 shillings per loaf, the other at a cost of 60 shillings per loaf, Assume that if the first bread is sold at x shillings a loaf and the second at y shillings a loaf, then the number of loaves that can be sold each is given by the formula:

$$N_1 = 250(y - x)$$

$$N_2 = 32000 + 250(x - 2y)$$

Determine x and y for maximum profit

c) Maximize graphically max

subject to $-x+2y \leq 6$ $5x + 4y \le 40$ $x, y \ge 0$

d) Use simplex method in the following maximization problem:

P = 2x + 6y + 4zMaximize $2x + 5y + 2z \le 38$ $4x + 2y + 3z \le 57$ $x + 3y + 5z \le 57$ $x, y, z \ge 0$

 $A_{(n \times n)}$

subject to

Question Three

- **a)** Prove that a matrix is diagonalizable if A has n linearly independent eigen vectors
- (6 marks) **b)** Using the Jacobi method find all the eigen values and corresponding eigen vectors of the matrix:

$$A = \begin{pmatrix} 1 & \sqrt{2} & 2 \\ \sqrt{2} & 3 & \sqrt{2} \\ 2 & \sqrt{2} & 1 \end{pmatrix} \qquad \tan 2\theta = \frac{2a_{ik}}{a_{ii} - a_{kk}}$$
given that
$$S1 = \begin{pmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 1 \\ \sin\theta & 0 & \cos\theta \end{pmatrix}$$
and
, using two rotation
marks)

(6

P = x + 4y

(8 marks)

(4 marks)

(5 marks)

$$A = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 3 & 2 \\ 3 & .0 & 1 \end{pmatrix}$$

c) Given the matrix

(i)	Write the characteristic polynomial	(2 marks)
(ii)	Write the characteristics equation	(1 mar)
(iii)	Find the eigen values	(2 marks)
(iv)	Find the eigen vectors corresponding to each eigen value	(3 marks)

Question Four

A_x = b

$$\begin{pmatrix} 1 & 2 \\ 1.0001 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 3 \\ 3.0001 \end{pmatrix}$$
has the unique solution
b) Solve the system of equation by using Gaussian elimination:

$$2x_1 + x_2 + x_3 = 1$$

$$2x_1 - 2x_2 + 3x_3 = 4$$

$$2x_1 + 3x_2 - x^3 = 5$$
(5 marks)
c) Find the minimal polynomial of a matrix given by:

b) Solve the system of equation by using Gaussian elimination
$$2x + x + x = 1$$

$$2x_1 + x_2 + x_3 = 1$$

$$2x_1 - 2x_2 + 3x_3 = 4$$

$$2x_1 + 3x_2 - x^3 = 5$$

c) Find the r

$$A = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 5 \end{pmatrix}$$
(6 marks)

$$A = \begin{pmatrix} 2 & -3 \\ 1 & -1 \end{pmatrix}$$
(a) Show that

$$A = \begin{pmatrix} 2 & -3 \\ 1 & -1 \end{pmatrix}$$
(b) Show that

$$A = \begin{pmatrix} 2 & -3 \\ 1 & -1 \end{pmatrix}$$
(c) Show that

$$A = \begin{pmatrix} 2 & -3 \\ 1 & -1 \end{pmatrix}$$
(c) Show that

$$A = \begin{pmatrix} 3 & -2 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$
(c) Constant of the matrix A

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
(c) Constant of the matrix A

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
(c) Constant of the matrix A
(c) Constant of the matrix A

$$(AB)^{-1} = B^{-1}A^{-1}$$

b) If A and B are non-singular matrices then AB is non-singular, prove that

(2 marks)

c) Form the augment A:I to find the inverse of the matrix:

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 5 & .5 & 1 \end{pmatrix}$$
(7 marks)
$$A = |A|I$$

d) Given that (adjoint A) where I is identify matrix, determine adjoint of the matrix given below, hence determine the inverse of the matrix.

$$A = \begin{pmatrix} 3 & -2 & 1 \\ 5 & 6 & 2 \\ 1 & 0 & -3 \end{pmatrix}$$

(5 marks)