

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR:
BACHELOR OF TECHNOLOGY INFORMATION TECHNOLOGY
ICS 2211: NUMBERAL LINEAR ALGEBRA
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2013
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages

Question One (Compulsory)

a) Estimate the eigen values of the matrix A using the Gerchgorin bounds:

$$
A=\left(\begin{array}{ccc}
1 & 2 & -1 \\
1 & 1 & 1 \\
1 & 3 & -1
\end{array}\right)
$$

$$
\lambda \quad A(n \times n)
$$

b) Prove that the minimal polynomial m() of a matrix a zero.
divides every polynomial that has A as (4 marks)
c) Consider the matrix A

$$
A=\left(\begin{array}{cc}
\lambda & 2 \\
2 & \lambda-3
\end{array}\right)
$$

λ
Find A^{-1} if A is non-singular for what value of is the matrix A nonsingular.
(3 marks)
d) Use Cramer's rule to solve the system of linear equations:

$$
\begin{aligned}
& -2 x+3 y-z=1 \\
& x+2 y-z=4 \\
& -2 x-y+z=-3
\end{aligned}
$$

(5 marks)
e) Given the second derivative mid-point formula

$$
\begin{aligned}
& \qquad f^{\prime \prime}\left(x_{o}\right)=\frac{1}{h^{2}}\left\{f\left(x_{o}-h\right)-2 f\left(x_{o}\right)+f\left(x_{o}+h\right)\right\}-\frac{h^{2}}{12} f^{(4)}(\xi) \\
& \qquad \frac{h^{2}}{12} f^{(4)}(\xi) \\
& \text { where } \quad x_{o}-h<\xi<x_{o}+h \\
& f(x)=x e^{x} \quad \text { is the error term and }
\end{aligned}
$$

where

$$
\text { taking } \mathrm{h}=0 \text {. and } \mathrm{h}=0.2 \text {. Give the errors }
$$

f) Apply Gaussian elimination to the system

$$
\begin{aligned}
& E_{1}: 0.003000 x_{1}+59.14 x_{2}=59.17 \\
& E_{2}=5.291 x_{1}-6.130 x_{2}=46.78
\end{aligned}
$$

using partial pivoting and four-digit arithmetic with rounding,
compare the results with the exact solution $\mathrm{x}_{1}=10.0$ and $\mathrm{x}_{2}=1.00$ that the differential equation $\left(2 x^{2}-x y^{2}-2 y+3\right) d x-\left(x^{2} y+2 x\right) d y$ is exact and find its general solution.
(6 marks)
g) Master tobacco finds that it can sell in two distinct markets. If it sells Q_{1} units in the first market and Q_{2} units in the second market, the revenue functions are:

$$
\begin{array}{ll}
R_{1}=A_{1} Q_{1}-B 1 Q_{2} \\
R_{2}=A_{2} Q_{2}-B 2 Q_{2}^{2} & C=A_{3}+B_{3}\left(Q_{1}+Q_{2}\right)
\end{array}
$$

and the total cost function is
Given that the A's and B's are known constants (positive) find the quantities Q_{1} and Q_{2} that will maximize profit.
h) Let B and C be inverse of A . Then show that $\mathrm{BA}=\mathrm{AC}=\mathrm{I}$

Question Two

a) Define the following terms as used in linear programming:
(i) Optimization
(ii) Feasible solution
(iii) Constraints
b) Broadways produces two types of bread one at a cost of 50 shillings per loaf, the other at a cost of 60 shillings per loaf, Assume that if the first bread is sold at x shillings a loaf and the second at y shillings a loaf, then the number of loaves that can be sold each is given by the formula:

$$
\begin{aligned}
& N_{1}=250(y-x) \\
& N_{2}=32000+250(x-2 y)
\end{aligned}
$$

Determine x and y for maximum profit

$$
P=x+4 y
$$

c) Maximize graphically max
subject to

$$
\begin{aligned}
& -x+2 y \leq 6 \\
& 5 x+4 y \leq 40 \\
& x, y \geq 0
\end{aligned}
$$

d) Use simplex method in the following maximization problem:

$$
P=2 x+6 y+4 z
$$

Maximize

$$
\begin{aligned}
& 2 x+5 y+2 z \leq 38 \\
& 4 x+2 y+3 z \leq 57 \\
& x+3 y+5 z \leq 57 \\
& x, y, z \geq 0
\end{aligned}
$$

subject to

Question Three

a) Prove that a matrix is diagonalizable if A has n linearly independent eigen vectors
(6 marks)
b) Using the Jacobi method find all the eigen values and corresponding eigen vectors of the matrix:

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
1 & \sqrt{2} & 2 \\
\sqrt{2} & 3 & \sqrt{2} \\
2 & \sqrt{2} & 1
\end{array}\right) \quad \tan 2 \theta=\frac{2 a_{i k}}{a_{i i}-a_{k k}} \\
& \mathrm{~S} 1=\left(\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 1 \\
\sin \theta & 0 & \cos \theta
\end{array}\right)
\end{aligned}
$$

marks)

$$
A=\left(\begin{array}{lll}
1 & 0 & 3 \\
2 & 3 & 2 \\
3 & .0 & 1
\end{array}\right)
$$

c) Given the matrix
(i) Write the characteristic polynomial
(2 marks)
(ii) Write the characteristics equation
(iii) Find the eigen values
(iv) Find the eigen vectors corresponding to each eigen value

Question Four

$$
A_{x}=b \quad\left(\begin{array}{cc}
1 & 2 \\
1.0001 & 2
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{3}{3.0001}
$$

$$
x=(1,1)^{T}
$$

a) The linear system
given by
Determine the residual vector for the poor approximation:

$$
\bar{x}=(3,-0.0001)^{T}
$$

b) Solve the system of equation by using Gaussian elimination:

$$
\begin{aligned}
& 2 x_{1}+x_{2}+x_{3}=1 \\
& 2 x_{1}-2 x_{2}+3 x_{3}=4 \\
& 2 x_{1}+3 x_{2}-x^{3}=5
\end{aligned}
$$

c) Find the minimal polynomial of a matrix given by:

$$
\begin{array}{r}
A=\left(\begin{array}{llll}
2 & 1 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 0 & 5
\end{array}\right) \\
A=\left(\begin{array}{ll}
2 & -3 \\
1 & -1
\end{array}\right) \tag{6marks}
\end{array}
$$

d) Show that is not diagonalizable
e) Find the algebraic multiplicity of an eigen value for the matrix A

$$
A=\left(\begin{array}{ccc}
3 & -2 & 0 \\
-2 & 3 & 0 \\
0 & 0 & 5
\end{array}\right)
$$

Question Five

$$
A=\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

a) Find the inverse of the matrix by making use of Cayley-Hamilton theorem

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

b) If A and B are non-singular matrices then $A B$ is non-singular, prove that
c) Form the augment $\mathrm{A}:$ I to find the inverse of the matrix:

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \tag{7marks}\\
0 & 2 & 3 \\
5 & .5 & 1
\end{array}\right)
$$

$$
A=|A| I
$$

d) Given that (adjoint A) where I is identify matrix, determine adjoint of the matrix given below, hence determine the inverse of the matrix.

$$
A=\left(\begin{array}{ccc}
3 & -2 & 1 \\
5 & 6 & 2 \\
1 & 0 & -3
\end{array}\right)
$$

