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Question One (Compulsory)

a) Estimate the eigen values of the matrix A using the Gerchgorin bounds: 
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(4 marks)

b) Prove that the minimal polynomial m(


) of a matrix 
 nnA 

 divides every polynomial that has A as
a zero. (4 marks)
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c) Consider the matrix A
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Find A-1 if A is non-singular for what value of 


is the matrix A nonsingular. (3 marks)
d) Use Cramer’s rule to solve the system of linear equations:
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(5 marks)
e) Given the second derivative mid-point formula
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is the error term and 
hxhx oo  

 for some 


 approximate 

 2"f

given that
  xxexf 

 taking h =0. and h = 0.2. Give the errors (5 marks)

f) Apply Gaussian elimination to the system

78.46130.6291.5

17.5914.59003000.0:

212
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


xxE

xxE

 using partial pivoting and four-digit arithmetic with rounding,
compare the results with the exact solution x1  = 10.0 and x2 = 1.00 that the differential equation
   dyxyxdxyxyx 2322 222 

is exact and find its general solution. (6 marks)

g) Master tobacco finds that it can sell in two distinct markets.  If it sells Q1 units in the first market and
Q2 units in the second market, the revenue functions are:
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 and the total cost function is 
 2133 QQBAC 

 
Given that the A’s and B’s are known constants (positive) find the quantities Q1 and Q2 that will
maximize profit. (5 marks)

h) Let B and C be inverse of A. Then show that BA = AC = I (2 marks)

Question Two

a) Define the following terms as used in linear programming:
(i) Optimization 
(ii) Feasible solution
(iii) Constraints
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(iv) Objective function (4 marks)

b) Broadways produces two types of bread one at a cost of 50 shillings per loaf, the other at a cost of 60
shillings per loaf, Assume that if the first bread is sold at x shillings a loaf and the second at y shillings
a loaf, then the number of loaves that can be sold each is given by the formula:

 
 yxN

xyN

225032000
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


 
Determine x and y for maximum profit (5 marks)

c) Maximize graphically max 
yxP 4

 subject to 

0,
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



yx

yx

yx

(3 marks)
d)  Use simplex method in the following maximization problem:

Maximize

zyxP 462 

subject to 
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(8 marks)

Question Three

a) Prove that a matrix 
 nnA 

 is diagonalizable if A has n linearly independent eigen vectors
(6 marks)

b) Using the Jacobi method find all the eigen values and corresponding eigen vectors of the matrix:
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 given that 
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, using two rotation (6

marks)
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c) Given the matrix 
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A

(i) Write the characteristic polynomial (2 marks)
(ii) Write the characteristics equation (1 mar)
(iii) Find the eigen values (2 marks)
(iv) Find the eigen vectors corresponding to each eigen value (3 marks)

Question Four 

a) The linear system  
bAx 

given by  



















0001.3

3

20001.1

21

2

1

x

x

 has the unique solution  

Tx )1,1(
.

Determine the residual vector for the poor approximation:

  Tx 0001.0,3 
 (3 marks)

b) Solve the system of equation by using Gaussian elimination:
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(5 marks)
c) Find the minimal polynomial of a matrix given by:
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(6 marks)

d) Show that 
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 is not diagonalizable (3 marks)

e) Find the algebraic multiplicity of an eigen value  


for the matrix A (3 marks)
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Question Five

a) Find the inverse of the matrix 
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by making use of Cayley-Hamilton theorem
(6 marks)
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b) If A and B are non-singular matrices then AB is non-singular, prove that 
  111   ABAB

(2 marks)
c) Form the augment A:I to find the inverse of the matrix:
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(7 marks)

d) Given that (adjoint A) 

IAA 
where I is identify matrix, determine adjoint of the matrix given below,

hence determine the inverse of the matrix.
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(5 marks)
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