

TECHNICAL UNIVERSITY OF MOMBASA
Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR:

BACHELOR OF SCIENCE IN ELECTRICAL \& ELECTRONIC ENGINEERING
SMA 2471: NUMERICAL ANALYSIS

END OF SEMESTER EXAMINATION

SERIES: DECEMBER 2013
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FOUR questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

$$
I\left(h, \frac{h}{2}, \frac{h}{4}\right) \quad \int_{0}^{1} \frac{d x}{1+x}
$$

a) Use Romberg method to compute to determine correct to 4 d .p given $\mathrm{h}=0.5$ if

$$
I(h)=0.7084, I\left(\frac{h}{2}\right)=0.6970 \quad I\left(\frac{h}{4}\right)=0.6941
$$

and
b) Find length L at $\mathrm{T}=372.1 \mathrm{k}$ using Newton divided difference method provided the relationship between length $L(m)$ and temperature $T(k)$ on a structure is:

T(Kelvin)	361	367	378	387	399

L (Metres)	154.9	167.0	191.0	212.5	244.2

$$
y=f(x)
$$

c) Use Simpson's rule to find the area under the curve
that passes through the three points P_{1} $(0,2), \mathrm{P}_{2}(1,3)$ and $\mathrm{P}_{3}(2,2)$
(3 marks)
d) Find the step size h such that the absolute value of the error for the trapezoidal rule is less than $5 \times 10-$

$$
\int_{2}^{7} \frac{d x}{x}
$$

9 when used to solve
(4 marks)

$$
\frac{d y}{d x}=x-y
$$

e) Solve subject to $\mathrm{y}(\mathrm{o})=1$ where $\mathrm{h}=0.1$ using Milne's predictor-corrector method by first obtaining the values $\mathrm{y}_{0}, \mathrm{y}_{1}, \mathrm{y}_{2}$ and y_{3} using the Euler's method.
(6 marks)

$$
y^{\prime}=\frac{t-y}{2}
$$

f) Use the Runge Kutta $4^{\text {th }}$ order to solve IVP at $\mathrm{x}=0.25$ if $\mathrm{y}(0)=1$ given $\mathrm{h}=0.25$
(4 marks)

$$
\int_{-1}^{1} \frac{d x}{x+2}
$$

g) Apply the 2 point Gauss-Legendre rule to approximate
(4 marks)

Question Two

$$
f(x)=\sin x
$$

a) Determine the step size h to be used in tabulation of in the interval $(1,3)$ so that a linear interpolation is correct to $4 \mathrm{~d} . \mathrm{p}$.
(6 marks)
b) Using Taylor's method solve

$$
x y^{\prime}=x-y_{\text {if }} \quad y(2)=2 \quad x=2.1
$$

c) Apply the forth order Runge-Kutta method to approximate the solution of the initial value problem

$$
\frac{d y}{d t}=\left(\frac{y}{t}\right)^{2}+\left(\frac{y}{t}\right)_{\text {if } \mathrm{y}(1)=1 \text { and } \mathrm{h}=0.1 \text { at } \mathrm{y}(1.1)}
$$

Question Three

$$
\frac{d y}{d x}=-y \quad y(0)=1
$$

a) Solve by Euler's method the differential equation given that and $\mathrm{h}=0.01$ for $\mathrm{n}=3$
(4 marks)

$$
I\left(h, \frac{h}{2}\right) \quad \int_{4.0}^{5.2} \log _{e} x d x
$$

b) Use the trapezium rule hence the Romberg method for
if $h=0.4$
(5 marks)
c) Apply the finite difference tables to determine a polynomial of the lowest degree corresponding to a set of equally spaced values of x if:

x	0	0.5	1.0	1.5	2.0	2.5	3.0
$\mathrm{f}(\mathrm{x})$	0.25	-1.5	-1.75	-0.50	2.25	6.50	12.25

$$
\frac{d y}{d x}=y-x \quad y(0)=2
$$

d) Solve where to find $y(0.1)$ if $\mathrm{h}=0.1$ using the $4^{\text {th }}$ order Runge-Kutta method.
(6 marks)

Question Four

a) An alternating current i is measured at equal intervals of 2 milliseconds as follows:

Time (ms)	0	2	4	6	8	10	1
2							

$q=\int_{0}^{12} i d t$
Use Simpson's $1 / 3$ rule to determine the charge q in millicoulombs given by

$$
y^{\prime}=x-y^{2} \quad y(0)=1
$$

b) Use Taylor's series to find $\mathrm{y}(0.1)$ given and correct to 4 d.p
(3 marks)

$$
\text { and correct to } 4 \mathrm{~d} . \mathrm{p}
$$

(6 marks)

$$
\frac{d y}{d x}=x+y
$$

c) Find $\mathrm{y}(0.4)$ using Adams-bash forth predictor-corrector method if when $\mathrm{y}(0)=1$ and $\mathrm{h}=$ 0.1 by first finding $\mathrm{y}_{0}, \mathrm{y}_{1}, \mathrm{y}_{2}$, and y_{3} using Euler's method
d) Determine an approximate value of sin0.15 by Langrange linear interpolation given and $\sin 0.2=0.19867$
(4 marks)

Question Five

a) Find a unique quadratic polynomial of degree 2 or less such that $f(0)=1, f(1)=3$ and $f(3)=55$ using the Langrange interpolation
(5 marks)

$$
\frac{d y}{d x}=y+x^{2} \quad y(0)=1
$$

b) Use Euler's modified method to determine y (0.05). If and $\mathrm{h}=0.05$
(6 marks)

$$
\int_{0}^{\frac{\pi}{2}} \sin x d x
$$

c) Evaluate using trapezoidal rule with $\mathrm{n}=10$
d) Determine the volume of a solid generated by revolution, where radius $r(x)$ the perpendicular distance from the x -axis is:

x	0	1	2	3	4	5	6
$\mathrm{r}(\mathrm{x})$	6.2	5.8	4.0	4.6	5.0	7.6	8.2

Using Simpson's rule with $\mathrm{n}=3$ and $\mathrm{h}=1$
(4 marks)

