

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR DEGREE OF:

BACHELOR OF SCIENCE IN ELECTRICAL & ELECTRONIC ENGINEERING BACHELOR OF SCIENCE IN CIVIL ENGINEERING

SMA 2471: NUMERICAL ANALYSIS

END OF SEMESTER EXAMINATION **SERIES: APRIL 2015** TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

Mathematical tables

-Scientific Calculator This paper consist of **FIVE** questions

Answer question ONE (COMPULSORY) and any other TWO questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

Question One (Compulsory)

a) Define an interpolating polynomial

$$f(x) = \sin x$$

b) Find a polynomial of degree three or less to approximate near $x_o = 0$ and use it to approximate sin (0.1) correct to 4dp (6 marks)

 $f(x) = \cos x - xe^{x}$

using the Newton-Raphson's iterative method if $x_0 = 1$ correct to 3 **c)** Find the root of dp up to the third step (6 marks)

$$\int_{1}^{3} \frac{2}{\sqrt{x}} dx$$

d) Use the trapezoidal rule with 4 intervals to evaluate correct to3 dp

e) Using the central difference, obtain a numerical approximation for the second derivative of:

(4 marks)

(1 mark)

 $\log_{10} x$

at x = 5 given h = 0.125

- **f)** Find the unique quadratic polynomial of degree two or les such that f(0) = 1, f(1) = 3 and f(3) = 55using the Lagrange interpolation (5 mars)
- g) Determine the value of y when x = 0.1 using Euler's modified method given that y(0) = 1 if $-v \perp v^2$

$$\frac{1}{dx} - y + \lambda$$

and h = 0.05

Question Two

 $f(x) = \sin x$

- a) Determine the step size h to be used in tabulation of in the interval (1, 3) so that a linear interpolation is correct to 4dp
- **b**) Determine the volume of a solid generated by revolution where radius r(x), is the perpendicular distance from the x-axis is if:

X	0	1	2	3	4	5	6
r(x)	6.2	5.8	4.0	4.6	5.0	7.6	8.2

Using Simpson's rule with n = 3 and h = 1

$$\int_{0}^{\pi/2} \sin x \, dx$$

c) Evaluate

using the trapezoidal rule with n = 10

Question Three

a) Use Simpson's rule to evaluate an approximate value of:

if:

$$\int_{2}^{4} \sqrt{1+x} dx$$

with a step size h = 0.5 correct to 4 significant figures (4 marks)

b) Approximate y(0.6) using the Adams bash forth predictor-corrector method with h = 0.1 for the $\frac{dy}{dt} = -2xy$

equation

X	0.0	0.1	0.2	0.3	0.4
у	1.00	0.9900	0.6908	0.9139	0.8522
	-				

$$\int_0^1 \frac{dx}{1+x}$$

- correct to 4 significant figures using the Gauss Legendre 3 point formula for the c) Evaluate interval (-1, 1) (5 marks) $v' = x - v^2$
- d) By Taylor's series of y(x) find y(0.1) correct to 4 decimal places if y(x) satisfies and y(0) =1 (5 marks)

Question Four

a) Use a finite difference table to detect the error in the given data hence correct the value: 5.3 5.4 5.9 5 5.1 5.2 5.5 5.6 5.7 5.8 6.0 X

(7 marks)

(4 marks)

(4 marks)

(6 marks)

(7 marks)

(6 marks)

f(x	125.000	132.65	140.60	148.87	157.44	166.37	175.61	185.19	195.112	205.37	216.006
)		1	8	7	6	5	6	3		9	

(4 marks)

 $\sin 0.1 = 0.09983$

b) Find an approximate value for sin 0.15 by Lagrange linear interpolation given and $\sin 0.2 = 0.19867$

(4 marks)

 $\frac{dy}{dx} = y - \frac{2x}{y}$ and find y(1) given that y(0) = 1

(7 marks)

(5 marks)

correct to 3

$$2x^{2} + 7x - 6 = 0$$

d) By Newton-Raphson method, find the positive root to the equation significant figures given $x_0 = 1$

Question Five

a) Use Euler's method to solve

$$\frac{dy}{dx} = \frac{t - y}{2}$$
if $y(0) = 1$ and $h = 1$ to find $y(2)$ (4 marks)

$$\frac{dy}{dx} = y - x$$
b) Apply the 2^{pq} order Dunge Kutte method to find $y(0, 2)$ if

b) Apply the 2^{nd} order Runge-Kutta method to find y(0.2) if where h = 0.1 correct to 4 decimal places given y(0) = 2 (5 marks)

$$\int_{0}^{\frac{\pi}{3}} \sqrt{1 - \frac{1}{3} \sin^{2} \theta} \, d\theta$$

using 6 intervals

- c) Use Simpson's rule to evaluate
- d) Given:

X	30°	60°	90°
Cos	0.8	0.5	0.0
xº	66	00	00

Find cos 50° using the quadratic Newton forward difference interpolating polynomial

(5 marks)

(6 marks)

c) Use Taylor's series method to solve and find y(1) gived) By Newton-Raphson method, find the positive root to the equi-