TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR DEGREE OF:
 BACHELOR OF SCIENCE IN ELECTRICAL \& ELECTRONIC ENGINEERING BACHELOR OF SCIENCE IN CIVIL ENGINEERING

SMA 2471: NUMERICAL ANALYSIS
END OF SEMESTER EXAMINATION
SERIES: APRIL 2015
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
Question One (Compulsory)
a) Define an interpolating polynomial

$$
f(x)=\sin x
$$

near $\mathrm{x}_{\mathrm{o}}=0$ and use it to
b) Find a polynomial of degree three or less to approximate approximate $\sin (0.1)$ correct to 4 dp

$$
f(x)=\cos x-x e^{x}
$$

c) Find the root of dp up to the third step using the Newton-Raphson's iterative method if $\mathrm{x}_{\mathrm{o}}=1$ correct to 3 (6 marks)

$$
\int_{1}^{3} \frac{2}{\sqrt{x}} d x
$$

d) Use the trapezoidal rule with 4 intervals to evaluate correct to3 dp
(4 marks)
e) Using the central difference, obtain a numerical approximation for the second derivative of:

$$
\begin{align*}
& \log _{10} x \\
& \text { at } \mathrm{x} \tag{4marks}
\end{align*}=5 \text { given } \mathrm{h}=0.125
$$

f) Find the unique quadratic polynomial of degree two or les such that $f(0)=1, f(1)=3$ and $f(3)=55$ using the Lagrange interpolation
g) Determine the value of y when $x=0.1$ using Euler's modified method given that $y(0)=1$ if $\frac{d y}{d x}=y+x^{2}$ and $\mathrm{h}=0.05$
(4 marks)

Question Two

$$
f(x)=\sin x
$$

a) Determine the step size h to be used in tabulation of in the interval $(1,3)$ so that a linear interpolation is correct to 4dp
(7 marks)
b) Determine the volume of a solid generated by revolution where radius $r(x)$, is the perpendicular distance from the x-axis is if:

x	0	1	2	3	4	5	6
$r(x)$	6.2	5.8	4.0	4.6	5.0	7.6	8.2

Using Simpson's rule with $\mathrm{n}=3$ and $\mathrm{h}=1$
(6 marks)

$$
\int_{0}^{\pi / 2} \sin x d x
$$

c) Evaluate
using the trapezoidal rule with $\mathrm{n}=10$
(7 marks)

Question Three

a) Use Simpson's rule to evaluate an approximate value of:

$$
\int_{2}^{4} \sqrt{1+x} d x
$$

$$
\text { with a step size } \mathrm{h}=0.5 \text { correct to } 4 \text { significant figures }
$$

(4 marks)
b) Approximate $\mathrm{y}(0.6)$ using the Adams bash forth predictor-corrector method with $\mathrm{h}=0.1$ for the

$$
\frac{d y}{d x}=-2 x y
$$

equation
if:

x	0.0	0.1	0.2	0.3	0.4
y	1.00	0.9900	0.6908	0.9139	0.8522

$$
\int_{0}^{1} \frac{d x}{1+x}
$$

c) Evaluate correct to 4 significant figures using the Gauss Legendre 3 point formula for the interval (-1, 1)
(5 marks)
$y^{\prime}=x-y^{2}$
d) By Taylor's series of $y(x)$ find $y(0.1)$ correct to 4 decimal places if $y(x)$ satisfies 1

Question Four

a) Use a finite difference table to detect the error in the given data hence correct the value:

x	5	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9	6.0

$\mathrm{f}(\mathrm{x}$	125.000	132.65	140.60	148.87	157.44	166.37	175.61	185.19	195.112	205.37	216.006
$)$		1	8	7	6	5	6	3	9	(4)	

b) Find an approximate value for sin 0.15 by Lagrange linear interpolation given and $\sin 0.2=0.19867$
(4 marks)

$$
\frac{d y}{d x}=y-\frac{2 x}{y}
$$

c) Use Taylor's series method to solve and find $\mathrm{y}(1)$ given that $\mathrm{y}(0)=1$
(7 marks)

$$
2 x^{2}+7 x-6=0
$$

d) By Newton-Raphson method, find the positive root to the equation correct to 3 significant figures given $\mathrm{X}_{0}=1$

Question Five

$$
\frac{d y}{d x}=\frac{t-y}{2}
$$

a) Use Euler's method to solve

$$
\begin{equation*}
\text { if } y(0)=1 \text { and } h=1 \text { to find } y(2) \tag{4marks}
\end{equation*}
$$

$$
\frac{d y}{d x}=y-x
$$

b) Apply the $2^{\text {nd }}$ order Runge-Kutta method to find $\mathrm{y}(0.2)$ if decimal places given $y(0)=2$
where $\mathrm{h}=0.1$ correct to 4 (5 marks)

$$
\int_{0}^{\pi / 3} \sqrt{1-\frac{1}{3} \sin ^{2} \theta} d \theta
$$

c) Use Simpson's rule to evaluate using 6 intervals
(6 marks)
d) Given:

x	30°	60°	90°
Cos	0.8	0.5	0.0
x^{o}	66	00	00

Find $\cos 50^{\circ}$ using the quadratic Newton forward difference interpolating polynomial
(5 marks)

