

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering & Technology in Conjunction with Kenya Institute of Highways and Building & Technology (KIHBT)

DEPARTMENT OF BUILDING & CIVIL ENGINEERING

HIGHER DIPLOMA IN BUILDING ECONOMICS

EBE 3101: MATHEMATICS I

SPECIAL/SUPPLEMENTARY EXAMINATION SERIES: AUGUST 2013 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Scientific Calculator
- Mathematical Table

This paper consists of **FIVE** questions. Answer any **THREE** questions

Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages **Question One (20 marks)**

 $y = x \cos 2x$ a) Find the first derivative from first principles for the function (8 marks) **b)** Differentiate the following: $z = \cos(x^2 + 4y) - ye^x$ **(i)** $y = arc \tan(x^2 + 5)$ (ii) (12 marks)

Question Two (20 marks)

- $z^4 + x 5j = 0$ giving the answer in the form (1, 0)**a)** (i) Solve the equation
 - (ii) Represent the roots obtained in a (i) on an Argand diagram.
- b) A surveyor covers 100km from station P at N40°W then 50KN to station Q that is N60°E. Lastly the mores S40°E to station R and coveres 80km. Find;
- The distance between R and P (i) (ii)

Question Three (20 marks)

$$z_1 = -2 - 4j, \ z_2 = -j, \ z_3 = 4$$

a) Given

$$\left|Z_1 + Z_2 + Z_3\right|$$

Find (i)

$$z4 = \frac{z_1}{z_2 - z_3}$$
 (ii)

 Z_4 (iii) Represent on an Argand diagram.

$$\frac{d^2 y}{dx^2} \qquad \qquad y = \frac{e_2 x \sin 4x}{x \log_e 10x}$$

b) Find for the function

Question Four (20 marks)

(12 marks)

(8 marks)

(12 marks)

(8 marks)

The direction of Q

f($(x, y) = \frac{e^x}{y^3} + x^4 \cos\left(\frac{x^3}{y}\right)$		
a) Given	find		
	∂f		
	$\overline{\partial x}$		
(i)			
	∂f		
	ду		
(ii)			(8 marks)
	$z^2 - 16 = 0$	x + yj	
b) (i) Solve the equation giving the answer in the form			
(ii) Represent the solution obtained in b(i) on a suitable diagram.			(12 marks)

Question Five (20 marks)

a) The surface area A, of a container is related to its dimensions by an expression of the form: $y = 2\pi rh + \pi r^2$

A r is measured too high by 1% h is measured too long by 1.5%

Find the error generated for the surface area.

b) Find $\frac{dy}{dx}$ for the function $z_1 = -4 + 6j$ $z_2 = -8j + 4$ (5 marks) c) Given $(z1 + z2)^7$ Find: (i) $\frac{|z_3|}{|z_4|}$ (ii) (ii) Express solution for (c) in the form re° (7 marks)

(8 marks)