

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering \& Technology in Conjunction with Kenya Institute of Highways and Building \& Technology (KIHBT)

EBE 3101: MATHEMATICS I
SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: AUGUST 2013
TIME: 2 HOURS

Instructions to Candidates:
You should have the following for this examination

- Answer Booklet
- Scientific Calculator
- Mathematical Table

This paper consists of FIVE questions. Answer any THREE questions

Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
Question One (20 marks)

$$
y=x \cos 2 x
$$

a) Find the first derivative from first principles for the function
b) Differentiate the following:

$$
z=\cos \left(x^{2}+4 y\right)-y e^{x}
$$

(i)

$$
y=\arctan \left(x^{2}+5\right)
$$

(ii)
(12 marks)

Question Two (20 marks)

$$
z^{4}+x-5 j=0
$$

a) (i) Solve the equation giving the answer in the form $(1,0)$
(ii) Represent the roots obtained in a (i) on an Argand diagram.
(8 marks)
b) A surveyor covers 100 km from station P at $\mathrm{N} 40^{\circ} \mathrm{W}$ then 50 KN to station Q that is $\mathrm{N} 60^{\circ} \mathrm{E}$. Lastly the mores $\mathrm{S} 40^{\circ} \mathrm{E}$ to station R and coveres 80 km . Find;
(i) The distance between R and P
(ii) The direction of Q

Question Three (20 marks)

$$
z_{1}=-2-4 j, z_{2}=-j, z 3=4
$$

a) Given

$$
\left|Z_{1}+Z_{2}+Z_{3}\right|
$$

Find (i)

$$
z 4=\frac{z_{1}}{z_{2}-z_{3}}
$$

(ii)

Z_{4}

(iii) Represent on an Argand diagram.
(12 marks)

$$
\frac{d^{2} y}{d x^{2}} \quad y=\frac{e_{2} x \sin 4 x}{x \log _{e} 10 x}
$$

b) Find for the function

Question Four (20 marks)

$$
f(x, y)=\frac{e^{x}}{y^{3}}+x^{4} \cos \left(\frac{x^{3}}{y}\right)
$$

a) Given
find

$$
\frac{\partial f}{\partial x}
$$

(i)

$$
\frac{\partial f}{\partial y}
$$

(ii)
(8 marks)

$$
z^{2}-16=0 \quad x+y j
$$

b) (i) Solve the equation giving the answer in the form
(ii) Represent the solution obtained in b(i) on a suitable diagram.

Question Five (20 marks)

a) The surface area A , of a container is related to its dimensions by an expression of the form:

$$
y=2 \pi r h+\pi r^{2}
$$

A

r is measured too high by 1%
h is measured too long by 1.5%
Find the error generated for the surface area.

$$
\frac{d y}{d x} \quad \partial x y+x \sin x-8 y^{2}
$$

b) Find for the function
c) Given

$$
(z 1+z 2)^{7}
$$

Find: (i)

$$
\left|\frac{z_{3}}{z_{4}}\right|
$$

(ii)

$$
r e^{Q}
$$

(iii) Express solution for (c) in the form

