

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A CONSTITUENT COLLEGE OF JKUAT)

Faculty of Applied & Health Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

DIPLOMA IN MEDICAL LAB SCIENCE DIPLOMA IN DAC DIPLOMA IN DNS DIPLOMA IN DNH DIPLOMA IN DIMBT

AMA 2101: MATHEMATICS FOR SCIENCE

SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: OCTOBER 2011

TIME: 2 HOURS

INSTRUCTIONS:

You should have the following for this examination *Answer booklet*This paper consists of **FIVE** questions
Answer question **ONE** (**COMPULSORY**) and any other **TWO** questions

QUESTION ONE (Compulsory)

(a)	Solve $3^x = 4$	(3 marks)
(b)	Rationalize $\frac{1}{1+\sqrt[2]{3}}$	(3
marks	8)	
	$\frac{32^{3/4} \times 16^0 \times 8}{32^{3/4}}$	
(c)	128 ^{3/2} Simplify	(3 marks)
(d)	$\log_4 x - \log_4 \log_4 (x - 2) = 0.5$ Solve log	(3 marks)
(e)	Solve $\frac{x-3}{5} - \frac{x+1}{8} = 2$	(3
marks	5)	
(f)	Solve by Quadratic formula	
	$2x^2 - 5x - 2 = 0$	(3 marks)
(g)	Write down the first four terms of the expansion of $(1 + x)^{10}$	(10 marks)
(h)	(i) In how many ways can you select a 3 – member committee from 5 clients members?	

$$m-1_{C_2} = \frac{(m-1)(m-2)}{2}$$
 (3 marks)

(iii) In how many ways can you arrange the letters in the word MATH? (4 marks)

ANSWER ANY TWO QUESTIONS

QUESTION TW0

(ii)

Show that

(a) Show that the sum of the first terms of an arithmetic Progression is given by

$$S_{n} = \frac{1}{2} |_{n|2a+(n-1)d|}$$
(4 marks)
(b) Expand
$$(2x-3y)^{4}$$
(c) Prove that $1 + \tan^{2} x = \sec^{2} x$
(4 marks)
(c) Prove that $1 + \tan^{2} x = \sec^{2} x$
(4 marks)
(c) Prove that $1 + \tan^{2} x = \sec^{2} x$
(4 marks)
(6)
$$\frac{5}{x+3} \cdot \frac{2}{x} = \frac{6}{x+3}$$
(7 marks)
(8)
(9) Solve by completing the square method
(9) Solve by completing the square method
(9) Given $x = 0.181 \ 818...$
Express it as a fraction.
(4 marks)
(5) Given $x = 0.181 \ 818...$
Express it as a fraction.
(4 marks)
(6)
(1) Write down the binomial expansion of
(1) $\frac{1}{1-x}$
(2) $x^{2} = 7.91$
(3 marks)
(5) One square Petri dish field has a side that is 12 cm longer than the side of a smaller square field. The total area of the two fields is 1224 cm². Find the side of each field.
(5) In a right angled triangle, AC=53 cm and Angle B is 65.1°. Find a, c and angle A (3 marks)

(d) Find x if the following is an arithmetic progression.

$$x+3$$
 2x+4, 4x,
, ... (3 marks)

(e) Solve
$$\log_2(x^2 - 9) = 3\log_2 2 + 1$$
 (4 marks)

QUESTION FOUR

State the Remainder Theoren and use it to fine the remainder when (a)

~

$$f(x) = x^3 + x^2 - 10x + 8$$

is divided by (x-5) (3 marks)

(c) Evaluate
$$16^{1/3}x4^{1/3}$$

(4 marks)

 $2x^2 + 5x - 2 = 0$ Solve by quadratic formula given (4 marks) (d)

QUESTION FIVE

(a)

$\left(2+\sqrt{3}\right)$ $\left(4-\sqrt{12}\right)$ Simplify (3 marks)

- (b) Express 30[°] in radians (2 marks)
- Two dice are rolled and the total score is recorded. What is the probability of (C) (4 marks) scoring an even sum?

(d) Plot the graph of
$$y = x^2 - 2x - 2$$
 $-4 \le x \le 4$ and use it to solve

$$x^2 - 2x - 2 = 0$$

(4 marks)

(e) The maximum temperature in a town is recorded every day as follows.

Temperature ⁰F	$40 \le F \angle 50$	$50 \le F \angle 60$	$60 \le F \angle 65$	$65 \le F \angle 70$	70 ≤ <i>F</i> ∠80
Frequency					